def main(): theta = [2.4, 0.02, 0.2, 6.9] M0 = np.array([2.0, 5.0, 3.0]) ds = abc.generate_dataset_full(hes1, theta) noisy_ds = abc.add_gaussian_noise_full(np.copy(ds)) populations = (abc.smc(hes1, noisy_ds, [300.0])) sys.exit(0) plt.plot(t, p1, 'r-') plt.plot(t, p11, 'b-') plt.subplot(313) plt.plot(t, p2, 'r-') plt.plot(t, p21, 'b-') plt.show()
def main(): theta = [2.4, 0.02, 0.2, 6.9 ] M0 = np.array([2.0, 5.0, 3.0]) ds = abc.generate_dataset_full(hes1, theta) noisy_ds = abc.add_gaussian_noise_full(np.copy(ds)) populations = (abc.smc(hes1, noisy_ds, [300.0])) sys.exit(0) plt.plot(t, p1,'r-') plt.plot(t, p11,'b-') plt.subplot(313) plt.plot(t, p2,'r-') plt.plot(t, p21,'b-') plt.show()
def gene_regulation(): theta = [1., 10.] t = np.arange(0, 15, 0.1) X0 = 1. ds = abc.generate_dataset_full(gene_reg, theta) noisy_ds = abc.add_gaussian_noise_full(np.copy(ds)) populations = abc.smc(gene_reg, noisy_ds, [300.0]) theta1 = utils.colMeans(np.vstack(populations[:-1])) X = integrate.odeint(gene_reg, X0, t, args=(theta, )) plt.plot(t, X, 'r-') X1 = integrate.odeint(gene_reg, X0, t, args=(theta1, )) plt.plot(t, X1, 'b-') plt.plot(t, noisy_ds, 'go') plt.show()
def lv_test(): theta = [1, 1] ds = abc.generate_dataset(lv, theta) ds = abc.add_gaussian_noise(ds) population = abc.smc(lv, ds, [30.0, 16.0, 6.0, 5.0, 4.3]) sys.exit(0)
def lv_test(): theta = [1,1] ds = abc.generate_dataset(lv, theta) ds = abc.add_gaussian_noise(ds) population = abc.smc(lv, ds, [30.0, 16.0, 6.0, 5.0, 4.3]) sys.exit(0)