Exemple #1
0
    def run(cls, args):
        corpus_dir = cls._parse_corpus_dir(args.corpus)

        log = utils.logger.get_log(verbose=True)
        try:
            Corpus.load(corpus_dir, validate=True, log=log)
            log.info('corpus is valid')
            sys.exit(0)
        except IOError as err:
            log.error(f'ERROR: {err}')
            log.error('corpus is NOT valid')
            sys.exit(1)
    def run(cls, args):
        # overload the default of use-energy to be false instead of
        # true (if not already specified in options) TODO unify that
        # with the overloaded_options above
        if all('use-energy' not in c[0] for c in cls.parsed_options):
            cls.parsed_options.append(('use-energy', 'false'))

        corpus_dir, output_dir = cls._parse_io_dirs(args, 'features')
        log = utils.logger.get_log(
            os.path.join(output_dir, 'features.log'), verbose=args.verbose)
        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        recipe = features.Features(corpus, output_dir, log=log)
        recipe.type = cls.feat_name
        recipe.use_pitch = utils.str2bool(args.pitch)  # 'true' to True
        recipe.use_cmvn = utils.str2bool(args.cmvn)
        recipe.delta_order = args.delta_order
        recipe.features_options = cls.parsed_options
        recipe.njobs = args.njobs
        recipe.delete_recipe = False if args.recipe else True
        recipe.compute()

        # export to h5features if asked for
        if args.h5f:
            recipe.log.info('exporting Kaldi ark features to h5features...')
            kaldi.scp_to_h5f(
                os.path.join(recipe.output_dir, 'feats.scp'),
                os.path.join(recipe.output_dir, 'feats.h5f'))
Exemple #3
0
    def run(cls, args):
        corpus_dir, output_dir = cls._parse_io_dirs(args)
        log = utils.logger.get_log(
            os.path.join(output_dir, 'decode.log'), verbose=args.verbose)
        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        # get back the features, language and acoustic models directories
        feat = cls._parse_aux_dir(corpus_dir, args.features, 'features')
        lang = cls._parse_aux_dir(corpus_dir, args.language_model, 'language')
        acou = cls._parse_aux_dir(corpus_dir, args.acoustic_model, 'acoustic')

        # instanciate the kaldi recipe
        recipe = decode.Decode(
            corpus, lang, feat, acou, output_dir,
            decode_type=cls.name, log=log)
        recipe.njobs = args.njobs
        recipe.delete_recipe = False if args.recipe else True

        # setup the model options parsed from command line
        for k, v in vars(args).iteritems():
            try:
                recipe.set_option(k.replace('_', '-'), v)
            except KeyError:
                pass

        # finally decode the corpus
        recipe.compute()
    def run(cls, args):
        corpus_dir, output_dir = cls._parse_io_dirs(args)
        log = utils.logger.get_log(
            os.path.join(output_dir, 'filter.log'), verbose=args.verbose)

        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        # retrieve the test proportion
        (subcorpus, not_kept_utterances) = corpus.create_filter(
                output_dir,
                function=args.function,
                nb_speaker=args.nb_speaker,
                new_speakers=args.new_speakers,
                THCHS30=args.THCHS30)

        if args.plot:
            subcorpus.plot()

        if args.trim:
            print("trimming utterances")
            subcorpus.save(
                    os.path.join(
                        output_dir, args.function, 'data'),
                    no_wavs=True, copy_wavs=False)
            subcorpus.trim(
                    corpus_dir, output_dir,
                    args.function, not_kept_utterances)
Exemple #5
0
    def run(cls, args):
        corpus_dir, output_dir = cls._parse_io_dirs(args)
        log = utils.logger.get_log(os.path.join(output_dir, 'language.log'),
                                   verbose=args.verbose)

        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        if args.model_order == 0:
            # we want a flat LM
            recipe = FlatLanguageModel(
                corpus,
                output_dir,
                log=log,
                level=args.model_level,
                position_dependent_phones=args.word_position_dependent,
                silence_probability=args.silence_probability)
        else:
            # order >= 1, classical ngram
            recipe = LanguageModel(
                corpus,
                output_dir,
                log=log,
                order=args.model_order,
                level=args.model_level,
                position_dependent_phones=args.word_position_dependent,
                silence_probability=args.silence_probability)

        recipe.delete_recipe = False if args.recipe else True
        recipe.compute()
Exemple #6
0
    def run(cls, args):
        corpus_dir, output_dir = cls._parse_io_dirs(args)
        log = utils.logger.get_log(os.path.join(output_dir, 'merge_wavs.log'),
                                   verbose=args.verbose)

        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        corpus.merge_wavs(corpus_dir, output_dir)

        corpus.save(os.path.join(output_dir, 'data'), no_wavs=True)
Exemple #7
0
    def run(cls, args):
        corpus_dir, output_dir = cls._parse_io_dirs(args)
        log = utils.logger.get_log(os.path.join(output_dir, 'filter.log'),
                                   verbose=args.verbose)

        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        corpus_plot = corpus.plot()

        corpus_plot.show()
        corpus_plot.savefig(os.path.join(output_dir, 'plot.png'))
Exemple #8
0
def test_save_corpus(tmpdir, corpus, copy_wavs):
    assert corpus.is_valid()
    corpus_saved = str(tmpdir.mkdir('corpus-{}'.format(copy_wavs)))
    corpus.save(corpus_saved, copy_wavs=copy_wavs)
    assert os.path.isfile(os.path.join(corpus_saved, 'meta.txt'))

    d = Corpus.load(corpus_saved)
    assert d.is_valid()
    assert corpus.lexicon == d.lexicon
    assert corpus.segments == d.segments
    assert corpus.phones == d.phones
    assert corpus.wavs == d.wavs
    def run(cls, args):
        corpus_dir = cls._parse_corpus_dir(args.corpus)

        log = utils.logger.get_log(verbose=True)
        corpus = Corpus.load(corpus_dir, validate=False, log=log)

        if corpus.is_valid():
            log.info('corpus is valid')
            sys.exit(0)
        else:
            log.error('corpus is NOT valid')
            sys.exit(1)
Exemple #10
0
def prepare_corpus(utts, tmpdir):
    # first try to load any prepared buckeye
    buckeye = os.path.join(utils.config.get('abkhazia', 'data-directory'),
                           'buckeye', 'data')

    # first search buckeye in the environment variable, the in the data
    # directory from the configuration file
    if 'ABKHAZIA_BUCKEYE' in os.environ:
        corpus = Corpus.load(os.environ['ABKHAZIA_BUCKEYE'])
    elif os.path.isdir(buckeye):
        corpus = Corpus.load(buckeye)
    else:  # prepare the whole buckeye corpus
        buckeye = utils.config.get('corpus', 'buckeye-directory')
        corpus = BuckeyePreparator(buckeye).prepare(tmpdir)

    corpus = corpus.subcorpus(utts)
    corpus.validate()

    assert sorted(corpus.utts()) == utts
    assert len(corpus.utts()) == len(utts)
    assert len(corpus.spks()) == len(set(utt.split('-')[0] for utt in utts))

    return corpus
    def run(cls, args):
        corpus_dir, output_dir = cls._parse_io_dirs(args)
        log = utils.logger.get_log(
            os.path.join(output_dir, '{}.log'.format(cls.name)),
            verbose=args.verbose)
        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        # get back the features directory TODO use cls._parse_aux_dir
        feats = (os.path.join(os.path.dirname(corpus_dir), 'features')
                 if args.features is None
                 else os.path.abspath(args.features))

        # pack the prepare_lang related arguments
        lang_args = {
            'level': args.lang_level,
            'silence_probability': args.silence_probability,
            'position_dependent_phones': args.word_position_dependent,
            'keep_tmp_dirs': True if args.recipe else False}

        # instanciate and setup the kaldi recipe with standard args
        if cls.am_class is not acoustic.Monophone:
            # get back the input directory
            input_dir = (
                os.path.join(os.path.dirname(corpus_dir),
                             '{}'.format(cls.prev_step[1]))
                if args.input_dir is None
                else os.path.abspath(args.input_dir))

            recipe = cls.am_class(
                corpus, feats, input_dir, output_dir, lang_args, log=log)
        else:
            recipe = cls.am_class(corpus, feats, output_dir, lang_args, log=log)

        recipe.njobs = args.njobs
        if args.recipe:
            recipe.delete_recipe = False

        # setup the model options parsed from command line
        for k, v in vars(args).iteritems():
            try:
                recipe.set_option(k.replace('_', '-'), v)
            except KeyError:
                pass

        # finally train the acoustic model
        recipe.compute()
Exemple #12
0
    def run(cls, args):
        corpus_dir, output_dir = cls._parse_io_dirs(args)
        log = utils.logger.get_log(os.path.join(output_dir, 'language.log'),
                                   verbose=args.verbose)

        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        # instanciate the lm recipe and compute
        recipe = LanguageModel(
            corpus,
            output_dir,
            log=log,
            order=args.model_order,
            level=args.model_level,
            position_dependent_phones=args.word_position_dependent,
            silence_probability=args.silence_probability)
        recipe.delete_recipe = False if args.recipe else True
        recipe.compute()
Exemple #13
0
def prepare_corpus(utts, tmpdir):
    # first try to load any prepared buckeye
    buckeye = os.path.join(utils.config.get('abkhazia', 'data-directory'),
                           'buckeye', 'data')
    if os.path.isdir(buckeye):
        corpus = Corpus.load(buckeye)

    else:  # prepare the whole buckeye corpus
        buckeye = utils.config.get('corpus', 'buckeye-directory')
        corpus = BuckeyePreparator(buckeye).prepare(tmpdir)

    corpus = corpus.subcorpus(utts)
    corpus.validate()

    assert sorted(corpus.utts()) == utts
    assert len(corpus.utts()) == len(utts)
    assert len(corpus.spks()) == len(set(utt.split('-')[0] for utt in utts))

    return corpus
Exemple #14
0
    def run(cls, args):
        corpus_dir, output_dir = cls._parse_io_dirs(args)
        log = utils.logger.get_log(os.path.join(output_dir, 'split.log'),
                                   verbose=args.verbose)

        corpus = Corpus.load(corpus_dir, validate=args.validate, log=log)

        # retrieve the test proportion
        if args.train_prop is None:
            test_prop = (cls.default_test_proportion
                         if args.test_prop is None else args.test_prop)
        else:
            test_prop = (1 - args.train_prop
                         if args.test_prop is None else args.test_prop)

        train, test = corpus.split(train_prop=args.train_prop,
                                   test_prop=test_prop,
                                   by_speakers=args.by_speakers,
                                   random_seed=args.random_seed)

        train.save(os.path.join(output_dir, 'train', 'data'))
        test.save(os.path.join(output_dir, 'test', 'data'))
Exemple #15
0
def test_empty():
    c = Corpus()
    assert not c.is_valid()
    assert c.spk2utt() == {}
    assert len(c.utts()) == 0
Exemple #16
0
def test_spk2utt():
    c = Corpus()
    c.utt2spk = {'u1': 's1', 'u2': 's1', 'u3': 's2'}
    assert c.spk2utt() == {'s1': ['u1', 'u2'], 's2': ['u3']}