flags.DEFINE_integer('num_eval_episodes', 10, 'The number of episodes to run eval on.') flags.DEFINE_integer('eval_interval', 10000, 'Run eval every eval_interval train steps') flags.DEFINE_boolean('eval_only', False, 'Whether to run evaluation only on trained checkpoints') flags.DEFINE_boolean('eval_deterministic', False, 'Whether to run evaluation using a deterministic policy') flags.DEFINE_integer('gpu_c', 0, 'GPU id for compute, e.g. Tensorflow.') # Added for Gibson flags.DEFINE_string('config_file', '../test/test.yaml', 'Config file for the experiment.') flags.DEFINE_list( 'model_ids', None, 'A comma-separated list of model ids to overwrite config_file.' 'len(model_ids) == num_parallel_environments') flags.DEFINE_list( 'model_ids_eval', None, 'A comma-separated list of model ids to overwrite config_file for eval.' 'len(model_ids) == num_parallel_environments_eval') flags.DEFINE_float('collision_reward_weight', 0.0, 'collision reward weight') flags.DEFINE_string('env_mode', 'headless', 'Mode for the simulator (gui or headless)') flags.DEFINE_string('env_type', 'gibson', 'Type for the Gibson environment (gibson or ig)') flags.DEFINE_float('action_timestep', 1.0 / 10.0, 'Action timestep for the simulator') flags.DEFINE_float('physics_timestep', 1.0 / 40.0, 'Physics timestep for the simulator') flags.DEFINE_integer('gpu_g', 0, 'GPU id for graphics, e.g. Gibson.')
from environment.GoEnv import Go import time, os import numpy as np from agent.agent import RandomAgent import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_integer("num_train_episodes", 10, "Number of training episodes for each base policy.") flags.DEFINE_integer("num_eval", 10, "Number of evaluation episodes") flags.DEFINE_integer("eval_every", 2000, "Episode frequency at which the agents are evaluated.") flags.DEFINE_integer("learn_every", 128, "Episode frequency at which the agents are evaluated.") flags.DEFINE_list("hidden_layers_sizes", [128], "Number of hidden units in the avg-net and Q-net.") flags.DEFINE_integer("replay_buffer_capacity", int(2e5), "Size of the replay buffer.") flags.DEFINE_integer("reservoir_buffer_capacity", int(2e6), "Size of the reservoir buffer.") def main(unused_argv): begin = time.time() env = Go() agents = [RandomAgent(idx) for idx in range(2)] for ep in range(FLAGS.num_eval): time_step = env.reset() while not time_step.last(): player_id = time_step.observations["current_player"]
import datetime import os import traceback import string import torch import random import gym_psketch.bots.model_bot import imitation as IL import generate_demo as demo from taco import train_taco from compile import train_compile FLAGS = flags.FLAGS flags.DEFINE_list('envs', default=['makebedfull-v0'], help='List of env to train. Use comma spearated') flags.DEFINE_list('test_envs', default=[], help='Extra test envs') flags.DEFINE_integer('max_steps', default=64, help='maximum environment steps') flags.DEFINE_integer('width', default=10, help='width of env') flags.DEFINE_integer('height', default=10, help='height of env') flags.DEFINE_enum('arch', enum_values=['mlp', 'lstm', 'omstack'], default='lstm', help='Architecture') flags.DEFINE_integer('eval_episodes', default=30, help='Evaluation episode number') # Model flags.DEFINE_integer('hidden_size', default=64, help='model hidden size')
'not be included in the vocabulary.') flags.DEFINE_float('sample', 1e-3, 'Subsampling rate.') flags.DEFINE_integer('window_size', 10, 'Num of words on the left or right side' ' of target word within a window.') flags.DEFINE_integer('hidden_size', 300, 'Length of word vector.') flags.DEFINE_integer('negatives', 5, 'Num of negative words to sample.') flags.DEFINE_float('power', 0.75, 'Distortion for negative sampling.') flags.DEFINE_float('alpha', 0.025, 'Initial learning rate.') flags.DEFINE_float('min_alpha', 0.0001, 'Final learning rate.') flags.DEFINE_boolean('add_bias', True, 'Whether to add bias term to dotproduct ' 'between syn0 and syn1 vectors.') flags.DEFINE_integer('log_per_steps', 10000, 'Every `log_per_steps` steps to ' ' log the value of loss to be minimized.') flags.DEFINE_list( 'filenames', None, 'Names of comma-separated input text files.') flags.DEFINE_string('in_dir', None, 'Input directory.') flags.DEFINE_string('out_dir', '/tmp/word2vec', 'Output directory.') FLAGS = flags.FLAGS def get_files_from_dir(in_dir): if in_dir is None: return None else: in_files = [] for f in os.listdir(in_dir): in_files.append(os.path.join(in_dir, f)) return in_files def main(_):
def define_base(data_dir=True, model_dir=True, clean=True, train_epochs=True, epochs_between_evals=True, stop_threshold=True, batch_size=True, num_gpu=True, hooks=True, export_dir=True): """Register base flags. Args: data_dir: Create a flag for specifying the input input directory. model_dir: Create a flag for specifying the model file directory. train_epochs: Create a flag to specify the number of training epochs. epochs_between_evals: Create a flag to specify the frequency of testing. stop_threshold: Create a flag to specify a threshold accuracy or other eval metric which should trigger the end of training. batch_size: Create a flag to specify the batch size. num_gpu: Create a flag to specify the number of GPUs used. hooks: Create a flag to specify hooks for logging. export_dir: Create a flag to specify where a SavedModel should be exported. Returns: A list of flags for core.py to marks as key flags. """ key_flags = [] if data_dir: flags.DEFINE_string(name="data_dir", short_name="dd", default="/tmp", help=help_wrap("The location of the input input.")) key_flags.append("data_dir") if model_dir: flags.DEFINE_string( name="model_dir", short_name="md", default="/tmp", help=help_wrap("The location of the model checkpoint files.")) key_flags.append("model_dir") if clean: flags.DEFINE_boolean( name="clean", default=False, help=help_wrap("If set, model_dir will be removed if it exists.")) key_flags.append("clean") if train_epochs: flags.DEFINE_integer( name="train_epochs", short_name="te", default=1, help=help_wrap("The number of epochs used to train.")) key_flags.append("train_epochs") if epochs_between_evals: flags.DEFINE_integer( name="epochs_between_evals", short_name="ebe", default=1, help=help_wrap("The number of training epochs to run between " "evaluations.")) key_flags.append("epochs_between_evals") if stop_threshold: flags.DEFINE_float( name="stop_threshold", short_name="st", default=None, help=help_wrap("If passed, training will stop at the earlier of " "train_epochs and when the evaluation metric is " "greater than or equal to stop_threshold.")) if batch_size: flags.DEFINE_integer( name="batch_size", short_name="bs", default=32, help=help_wrap( "Batch size for training and evaluation. When using " "multiple gpus, this is the global batch size for " "all devices. For example, if the batch size is 32 " "and there are 4 GPUs, each GPU will get 8 examples on " "each step.")) key_flags.append("batch_size") if num_gpu: flags.DEFINE_integer( name="num_gpus", short_name="ng", default=1 if tf.test.is_gpu_available() else 0, help=help_wrap( "How many GPUs to use with the DistributionStrategies API. The " "default is 1 if TensorFlow can detect a GPU, and 0 otherwise." )) if hooks: # Construct a pretty summary of hooks. hook_list_str = (u"\ufeff Hook:\n" + u"\n".join( [u"\ufeff {}".format(key) for key in hooks_helper.HOOKS])) flags.DEFINE_list( name="hooks", short_name="hk", default="LoggingTensorHook", help=help_wrap( u"A list of (case insensitive) strings to specify the names of " u"training hooks.\n{}\n\ufeff Example: `--hooks ProfilerHook," u"ExamplesPerSecondHook`\n See official.utils.logs.hooks_helper " u"for details.".format(hook_list_str))) key_flags.append("hooks") if export_dir: flags.DEFINE_string( name="export_dir", short_name="ed", default=None, help=help_wrap( "If set, a SavedModel serialization of the model will " "be exported to this directory at the end of training. " "See the README for more details and relevant links.")) key_flags.append("export_dir") return key_flags
'ensemble members.') flags.DEFINE_integer('width_multiplier', 10, 'Integer to multiply the number of' 'typical filters by. "k" in ResNet-n-k.') flags.DEFINE_integer('per_core_batch_size', 64, 'Batch size per TPU core/GPU.') flags.DEFINE_integer('batch_repetitions', 4, 'Number of times an example is' 'repeated in a training batch. More repetitions lead to' 'lower variance gradients and increased training time.') flags.DEFINE_integer('seed', 0, 'Random seed.') flags.DEFINE_float('base_learning_rate', 0.1, 'Base learning rate when total training batch size is 128.') flags.DEFINE_integer( 'lr_warmup_epochs', 1, 'Number of epochs for a linear warmup to the initial ' 'learning rate. Use 0 to do no warmup.') flags.DEFINE_float('lr_decay_ratio', 0.2, 'Amount to decay learning rate.') flags.DEFINE_list('lr_decay_epochs', ['80', '160', '180'], 'Epochs to decay learning rate by.') flags.DEFINE_float('l2', 3e-4, 'L2 coefficient.') flags.DEFINE_enum( 'dataset', 'cifar10', enum_values=['cifar10', 'cifar100'], help='Dataset.') flags.DEFINE_string( 'cifar100_c_path', None, 'Path to the TFRecords files for CIFAR-100-C. Only valid ' '(and required) if dataset is cifar100 and corruptions.') flags.DEFINE_integer( 'corruptions_interval', 250, 'Number of epochs between evaluating on the corrupted ' 'test data. Use -1 to never evaluate.') flags.DEFINE_integer( 'checkpoint_interval', -1, 'Number of epochs between saving checkpoints. Use -1 to ' 'never save checkpoints.')
"""Pose embedding model training base code.""" import math from absl import flags import tensorflow.compat.v1 as tf import tf_slim from poem.core import data_utils from poem.core import keypoint_utils from poem.core import loss_utils from poem.core import pipeline_utils FLAGS = flags.FLAGS flags.DEFINE_list('input_table', None, 'CSV of input tf.Example training table patterns.') flags.mark_flag_as_required('input_table') flags.DEFINE_string('train_log_dir', None, 'Directory to save checkpoints and summary logs.') flags.mark_flag_as_required('train_log_dir') flags.DEFINE_string('input_keypoint_profile_name_3d', 'LEGACY_3DH36M17', 'Profile name for input 3D keypoints.') flags.DEFINE_string( 'input_keypoint_profile_name_2d', 'LEGACY_2DCOCO13', 'Profile name for 2D keypoints from input sources. Use None to ignore input' ' 2D keypoints.') # See `common_module.SUPPORTED_TRAINING_MODEL_INPUT_KEYPOINT_TYPES`.
# ============================================================================ """Rewrite script for TF->JAX.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections # Dependency imports from absl import app from absl import flags flags.DEFINE_boolean('numpy_to_jax', False, 'Whether or not to rewrite numpy imports to jax.numpy') flags.DEFINE_list('omit_deps', [], 'List of build deps being omitted.') FLAGS = flags.FLAGS TF_REPLACEMENTS = { 'import tensorflow ': 'from tensorflow_probability.python.internal.backend import numpy ', 'import tensorflow.compat.v1': 'from tensorflow_probability.python.internal.backend.numpy.compat ' 'import v1', 'import tensorflow.compat.v2': 'from tensorflow_probability.python.internal.backend.numpy.compat ' 'import v2', 'import tensorflow_probability as tfp': 'import tensorflow_probability as tfp; ' 'tfp = tfp.substrates.numpy',
from tensor2robot.models import tpu_model_wrapper from tensor2robot.utils import tensorspec_utils import tensorflow as tf # tf from typing import Any, Callable, Dict, List, Optional, Text EXPORTER_FN = Callable[[ model_interface.ModelInterface, abstract_export_generator. AbstractExportGenerator ], List[tf.estimator.Exporter]] FLAGS = flags.FLAGS try: flags.DEFINE_list( 'gin_configs', None, 'A comma-separated list of paths to Gin ' 'configuration files.') flags.DEFINE_multi_string( 'gin_bindings', [], 'A newline separated list of Gin parameter bindings.') except flags.DuplicateFlagError: pass gin_configurable_eval_spec = gin.external_configurable( tf.estimator.EvalSpec, name='tf.estimator.EvalSpec') def print_spec(tensor_spec): """Iterate over a spec and print its values in sorted order. Args:
import tensorflow_probability as tfp from tensorflow_probability.python.layers import util as tfp_layers_util from meta_learning_without_memorization.pose_code.maml_bbb_2 import MAML FLAGS = flags.FLAGS ## Dataset/method options flags.DEFINE_string('datasource', 'pose', 'sinusoid or omniglot or miniimagenet') flags.DEFINE_integer('dim_w', 196, 'dimension of w') flags.DEFINE_integer('dim_im', 128, 'dimension of image') flags.DEFINE_integer('dim_y', 1, 'dimension of w') flags.DEFINE_string('data_dir', None, 'Directory of data files.') get_data_dir = lambda: FLAGS.data_dir flags.DEFINE_list('data', ['train_data_ins.pkl', 'val_data_ins.pkl'], 'data name') ## Training options flags.DEFINE_float('beta', 1e-3, 'beta for IB') flags.DEFINE_integer( 'num_classes', 1, 'number of classes used in classification (e.g. 5-way classification).') flags.DEFINE_integer( 'update_batch_size', 15, 'number of examples used for inner gradient update (K for K-shot learning).' ) flags.DEFINE_integer('num_updates', 5, 'number of inner gradient updates during training.') flags.DEFINE_integer('meta_batch_size', 10, 'number of tasks sampled per meta-update') flags.DEFINE_integer('test_num_updates', 20,
def test_write_help_in_xmlformat(self): fv = flags.FlagValues() # Since these flags are defined by the top module, they are all key. flags.DEFINE_integer('index', 17, 'An integer flag', flag_values=fv) flags.DEFINE_integer('nb_iters', 17, 'An integer flag', lower_bound=5, upper_bound=27, flag_values=fv) flags.DEFINE_string('file_path', '/path/to/my/dir', 'A test string flag.', flag_values=fv) flags.DEFINE_boolean('use_gpu', False, 'Use gpu for performance.', flag_values=fv) flags.DEFINE_enum('cc_version', 'stable', ['stable', 'experimental'], 'Compiler version to use.', flag_values=fv) flags.DEFINE_list('files', 'a.cc,a.h,archive/old.zip', 'Files to process.', flag_values=fv) flags.DEFINE_list('allow_users', ['alice', 'bob'], 'Users with access.', flag_values=fv) flags.DEFINE_spaceseplist('dirs', 'src libs bins', 'Directories to create.', flag_values=fv) flags.DEFINE_multi_string('to_delete', ['a.cc', 'b.h'], 'Files to delete', flag_values=fv) flags.DEFINE_multi_integer('cols', [5, 7, 23], 'Columns to select', flag_values=fv) flags.DEFINE_multi_enum('flavours', ['APPLE', 'BANANA'], ['APPLE', 'BANANA', 'CHERRY'], 'Compilation flavour.', flag_values=fv) # Define a few flags in a different module. module_bar.define_flags(flag_values=fv) # And declare only a few of them to be key. This way, we have # different kinds of flags, defined in different modules, and not # all of them are key flags. flags.declare_key_flag('tmod_bar_z', flag_values=fv) flags.declare_key_flag('tmod_bar_u', flag_values=fv) # Generate flag help in XML format in the StringIO sio. sio = io.StringIO() if six.PY3 else io.BytesIO() fv.write_help_in_xml_format(sio) # Check that we got the expected result. expected_output_template = EXPECTED_HELP_XML_START main_module_name = sys.argv[0] module_bar_name = module_bar.__name__ if main_module_name < module_bar_name: expected_output_template += EXPECTED_HELP_XML_FOR_FLAGS_FROM_MAIN_MODULE expected_output_template += EXPECTED_HELP_XML_FOR_FLAGS_FROM_MODULE_BAR else: expected_output_template += EXPECTED_HELP_XML_FOR_FLAGS_FROM_MODULE_BAR expected_output_template += EXPECTED_HELP_XML_FOR_FLAGS_FROM_MAIN_MODULE expected_output_template += EXPECTED_HELP_XML_END # XML representation of the whitespace list separators. whitespace_separators = _list_separators_in_xmlformat( string.whitespace, indent=' ') expected_output = (expected_output_template % { 'basename_of_argv0': os.path.basename(sys.argv[0]), 'usage_doc': sys.modules['__main__'].__doc__, 'main_module_name': main_module_name, 'module_bar_name': module_bar_name, 'whitespace_separators': whitespace_separators }) actual_output = sio.getvalue() self.assertMultiLineEqual(expected_output, actual_output) # Also check that our result is valid XML. minidom.parseString # throws an xml.parsers.expat.ExpatError in case of an error. xml.dom.minidom.parseString(actual_output)
from __future__ import print_function import importlib import inspect import re # Dependency imports from absl import app from absl import flags FLAGS = flags.FLAGS flags.DEFINE_string('module_name', '', 'TF linalg module to transform') flags.DEFINE_list( 'whitelist', '', 'TF linalg module whitelist (other imports will be commented-out)') MODULE_MAPPINGS = { 'framework import dtypes': 'dtype as dtypes', 'framework import errors': 'errors', 'framework import ops': 'ops', 'framework import tensor_shape': 'ops as tensor_shape', 'module import module': 'ops as module', 'ops import array_ops': 'numpy_array as array_ops', 'ops import check_ops': 'debugging as check_ops', 'ops.signal import fft_ops': 'numpy_signal as fft_ops', 'ops import control_flow_ops': 'control_flow as control_flow_ops', 'ops import linalg_ops': 'linalg_impl as linalg_ops', 'ops import math_ops': 'numpy_math as math_ops', 'ops import variables as variables_module': 'ops as variables_module',
from threading import Thread from time import time from typing import List import humanize from absl import app, flags import compiler_gym.util.flags.output_dir # noqa Flag definition. from compiler_gym.envs import CompilerEnv from compiler_gym.util.flags.benchmark_from_flags import benchmark_from_flags from compiler_gym.util.flags.env_from_flags import env_from_flags from compiler_gym.util.logs import create_logging_dir flags.DEFINE_list( "actions", [], "A list of action names to enumerate. If not provided, all actions are used " "(warning: this might make a long time!)", ) flags.DEFINE_integer("episode_length", 5, "The number of steps in each episode.") flags.DEFINE_integer( "nproc", cpu_count(), "The number of parallel worker threads to run." ) FLAGS = flags.FLAGS def grouper(iterable, n): """Split an iterable into chunks of length `n`, padded if required.""" args = [iter(iterable)] * n return itertools.zip_longest(*args, fillvalue=None)
from dm_c19_modelling.england_data import dataset_merge_util from dm_c19_modelling.england_data import error_reporting_util import pandas as pd FLAGS = flags.FLAGS flags.DEFINE_string( "scrape_date", None, "Enter in the form YYYYMMDD, eg. " "November 5, 2020 would be '20201105'. If you want the " "latest date, enter 'latest'.") flags.DEFINE_string("input_directory", None, "The directory to read the standardized data .csvs from.") flags.DEFINE_string("output_directory", None, "The directory to write the merged data .csv to.") flags.DEFINE_list( "names", None, "List of names: " f"{', '.join([data_type.value for data_type in constants.DataTypes])}") flags.mark_flag_as_required("scrape_date") flags.mark_flag_as_required("input_directory") flags.mark_flag_as_required("output_directory") @error_reporting_util.report_exception def main(argv): if len(argv) > 1: raise app.UsageError("Too many command-line arguments.") scrape_date = FLAGS.scrape_date if scrape_date == "latest": logging.info("Merging data for 'latest' scrape date") scrape_date_dirname = max(os.listdir(FLAGS.input_directory))
import config import datagen """ This script trains a model on triplets. Example usage: python train.py --save_to progress/test --num_epochs 10 --batch_size 8 --model mobilenet_v2 --input_size 224,224 --jitter --overwrite """ flags.DEFINE_string('save_to', config.SAVE_TO_DEFAULT, 'directory to save checkpoints and logs') flags.DEFINE_boolean('overwrite', False, 'Overwrite given save path') flags.DEFINE_string('from_ckpt', None, 'path to continue training on checkpoint') flags.DEFINE_boolean('jitter', config.JITTER_DEFAULT, 'Apply image augmentation') flags.DEFINE_integer('batch_size', config.BATCH_SIZE_DEFAULT, 'batch size') flags.DEFINE_list('input_size', config.INPUT_SIZE_DEFAULT, 'input size in (width, height) format') flags.DEFINE_boolean('keep_aspect_ratio', config.KEEP_ASPECT_RATIO_DEFAULT, 'keep aspect ratio when resizing patches') flags.DEFINE_list('loss_weights',config.LOSS_WEIGHTS_DEFAULT, 'loss weights size in (w_dimension, w_orientation, w_confidence) format') flags.DEFINE_integer('num_bins', config.NUM_BINS_DEFAULT, 'numebr of bins used in orientation regression') flags.DEFINE_integer('num_epochs', config.NUM_EPOCHS_DEFAULT, 'number of epochs') flags.DEFINE_string('model', config.MODEL_DEFAULT, 'integer model type - %s'%str(config.MODELS.keys())) def main(_argv): assert not ((FLAGS.overwrite) and (FLAGS.from_ckpt is not None)) input_size = list(map(int, FLAGS.input_size)) # (width, height) input_shape = (input_size[1], input_size[0], 3) loss_weights = list(map(float, FLAGS.loss_weights)) # Load data logging.info("Loading data") kitti_reader = reader.KittiReader()
from absl import app from absl import flags import tensorflow.compat.v2 as tf from non_semantic_speech_benchmark.eval_embedding.finetune import get_data from non_semantic_speech_benchmark.eval_embedding.finetune import models FLAGS = flags.FLAGS flags.DEFINE_string('file_pattern', None, 'Dataset location.') flags.DEFINE_string('samples_key', None, 'Samples name.') flags.DEFINE_integer('ml', 16000, 'Minimum length.') flags.DEFINE_alias('min_length', 'ml') flags.DEFINE_string('label_key', None, 'Name of label to use.') flags.DEFINE_list('label_list', None, 'List of possible label values.') flags.DEFINE_integer('tbs', 1, 'Hyperparameter: batch size.') flags.DEFINE_alias('train_batch_size', 'tbs') flags.DEFINE_integer('shuffle_buffer_size', None, 'shuffle_buffer_size') flags.DEFINE_integer('nc', None, 'num_clusters') flags.DEFINE_alias('num_clusters', 'nc') flags.DEFINE_float('alpha_init', None, 'Initial autopool alpha.') flags.DEFINE_alias('ai', 'alpha_init') flags.DEFINE_boolean('ubn', None, 'Whether to use batch normalization.') flags.DEFINE_alias('use_batch_normalization', 'ubn') flags.DEFINE_float('lr', 0.001, 'Hyperparameter: learning rate.') flags.DEFINE_string('logdir', None, 'Path to directory where to store summaries.')
import re from absl import app from absl import flags import pandas as pd import tensorflow as tf from tensorflow import feature_column as fc from tensorflow_lattice import configs from tensorflow_lattice import estimators FLAGS = flags.FLAGS flags.DEFINE_float('learning_rate', 0.1, 'Learning rate.') flags.DEFINE_integer('batch_size', 100, 'Batch size.') flags.DEFINE_integer('num_epochs', 50, 'Number of training epoch.') flags.DEFINE_integer('prefitting_num_epochs', 10, 'Prefitting epochs.') flags.DEFINE_list( 'config_updates', '', 'Comma separated list of updates to model configs in name=value format.' 'See tfl.configs.apply_updates().') def main(_): # Parse configs updates from command line flags. config_updates = [] for update in FLAGS.config_updates: config_updates.extend(re.findall(r'(\S*)\s*=\s*(\S*)', update)) # UCI Statlog (Heart) dataset. csv_file = tf.keras.utils.get_file( 'heart.csv', 'http://storage.googleapis.com/applied-dl/heart.csv') df = pd.read_csv(csv_file) target = df.pop('target') train_size = int(len(df) * 0.8)
flags.DEFINE_string("train_file", None, "Path to processed training file") flags.DEFINE_integer("num_train_examples", None, "Number of examples used for training the model.") flags.DEFINE_string( "bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_list("label_list", [ '[PAD]', 'B-product_characteristics', 'U-product_color', 'U-product_category', 'L-product_characteristics', 'U-product_brand', '-', 'U-product_characteristics', 'B-product_brand', 'L-product_brand', 'O', 'X', '[CLS]', '[SEP]' ], "labels used in preprocessing.") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") ## Other parameters flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") # if you download cased checkpoint you should use "False",if uncased you should use # "True"
from absl import flags # Detection flags. flags.DEFINE_list( 'obstacle_detection_model_paths', 'dependencies/models/obstacle_detection/faster-rcnn/frozen_inference_graph.pb', # noqa: E501 'Comma-separated list of model paths') flags.DEFINE_list('obstacle_detection_model_names', 'faster-rcnn', 'Comma-separated list of model names') flags.DEFINE_float( 'obstacle_detection_gpu_memory_fraction', 0.3, 'GPU memory fraction allocated to each obstacle detector operator') flags.DEFINE_integer('obstacle_detection_gpu_index', 0, 'The index of the GPU to deploy the model on') flags.DEFINE_float('obstacle_detection_min_score_threshold', 0.5, 'Min score threshold for bounding box') flags.DEFINE_string('path_coco_labels', 'dependencies/models/pylot.names', 'Path to the COCO labels') flags.DEFINE_float('dynamic_obstacle_distance_threshold', 30.0, 'Max distance to consider dynamic obstacles [m]') flags.DEFINE_float( 'static_obstacle_distance_threshold', 70.0, 'Max distance to consider static obstacles (e.g., traffic lights) [m]') # Traffic light detector flags. flags.DEFINE_string( 'traffic_light_det_model_path', 'dependencies/models/traffic_light_detection/faster-rcnn/frozen_inference_graph.pb', # noqa: E501 'Path to the traffic light model protobuf') flags.DEFINE_float('traffic_light_det_min_score_threshold', 0.3, 'Min score threshold for bounding box')
from collections import defaultdict from absl import app from absl import flags from absl import logging import h5py import numpy as np import tensorflow as tf FLAGS = flags.FLAGS flags.DEFINE_list( 'partition_volumes', None, 'Partition volumes as ' '<volume_name>:<volume_path>:<dataset>, where volume_path ' 'points to a HDF5 volume, and <volume_name> is an arbitrary ' 'label that will have to also be used during training.') flags.DEFINE_string( 'coordinate_output', None, 'Path to a TF Record file in which to save the ' 'coordinates.') flags.DEFINE_list( 'margin', None, '(z, y, x) tuple specifying the ' 'number of voxels adjacent to the border of the volume to ' 'exclude from sampling. This should normally be set to the ' 'radius of the FFN training FoV (i.e. network FoV radius ' '+ deltas.') IGNORE_PARTITION = 255
FLAGS = flags.FLAGS flags.DEFINE_string('avd', None, 'The avd to test (or pick first available from emulator)') flags.DEFINE_string( 'avd_root', None, 'The ANDROID_SDK_HOME to use, or existing environment var if not set.') flags.DEFINE_string( 'sdk_root', None, 'The ANDROID_SDK_ROOT to use, or existing environment var if not set.') flags.DEFINE_string('emulator', None, 'Emulator executable') flags.DEFINE_integer('maxboot', 120, 'Maximum time to start emulator') flags.DEFINE_string('stackwalker', None, 'Breakpad minidump_stackwalker executable') flags.DEFINE_string('symbol_src', None, 'Location of the .sym files') flags.DEFINE_list('args', [], 'Additional parameters to pass to the emulator launcher') ext = '' if platform.system().lower() == 'windows': ext = '.exe' def crash_emulator(connection): """Send the crash command to the emulator. This should cause an immediate crash, which will cause a disconnect, so the while loop should exit immediately. Note: This will NOT WORK with emulators that are not build with crash support!! """ while connection.is_connected():
# Optimization and evaluation flags flags.DEFINE_integer('seed', 8, 'Random seed.') flags.DEFINE_integer('per_core_batch_size', 32, 'Batch size per TPU core/GPU.') flags.DEFINE_float( 'base_learning_rate', 1e-5, 'Base learning rate when total batch size is 128. It is ' 'scaled by the ratio of the total batch size to 128.') flags.DEFINE_integer( 'checkpoint_interval', 5, 'Number of epochs between saving checkpoints. Use -1 to ' 'never save checkpoints.') flags.DEFINE_integer('evaluation_interval', 1, 'Number of epochs between evaluation.') flags.DEFINE_integer('num_bins', 15, 'Number of bins for ECE.') flags.DEFINE_list( 'fractions', ['0.0', '0.01', '0.05', '0.1', '0.15', '0.2'], 'A list of fractions of total examples to send to ' 'the moderators (up to 1).') flags.DEFINE_string('output_dir', '/tmp/toxic_comments', 'Output directory.') flags.DEFINE_integer('train_epochs', 5, 'Number of training epochs.') flags.DEFINE_float( 'warmup_proportion', 0.1, 'Proportion of training to perform linear learning rate warmup for. ' 'E.g., 0.1 = 10% of training.') flags.DEFINE_float( 'ece_label_threshold', 0.7, 'Threshold used to convert toxicity score into binary labels for computing ' 'Expected Calibration Error (ECE). Default is 0.7 which is the threshold ' 'value recommended by Jigsaw team.') # Loss type flags.DEFINE_string('loss_type', 'cross_entropy',
from absl import app from absl import flags import t5.data import tensorflow as tf import tensorflow_datasets as tfds FLAGS = flags.FLAGS flags.DEFINE_string("predictions_file", None, "Path to model predictions.") flags.DEFINE_string("task", None, "T5 task name for this benchmark.") flags.DEFINE_string("tfds_name", None, "Short name of tfds (e.g. 'cb').") flags.DEFINE_string("out_dir", None, "Path to write output file.") flags.DEFINE_string("split", "test", "Split, should typically be test.") flags.DEFINE_boolean("super", False, "Whether to make SuperGLUE-style file.") flags.DEFINE_boolean("cached", True, "Whether to used cached dataset.") flags.DEFINE_list("additional_task_cache_dirs", [], "Dirs with cached tasks.") FILE_NAME_MAP = { "boolq": "BoolQ", "cb": "CB", "copa": "COPA", "multirc": "MultiRC", "record": "ReCoRD", "rte": "RTE", "wic": "WiC", "cola": "CoLA", "sst2": "SST-2", "mrpc": "MRPC", "stsb": "STS-B", "qqp": "QQP", "mnli_matched": "MNLI-m",
Example usage: mkdir stoichs enumerate_stoichiometries.py --output_prefix=stoichs/ \ --num_heavy=3 --heavy_elements=C,N,O,S """ from absl import app from absl import flags from graph_sampler import stoichiometry FLAGS = flags.FLAGS flags.DEFINE_integer('num_heavy', None, 'Number of non-hydrogen atoms.') flags.DEFINE_list('heavy_elements', ['C', 'N', 'N+', 'O', 'O-', 'F'], 'Which heavy elements to use.') flags.DEFINE_string('output_prefix', '', 'Prefix for output files.') flags.DEFINE_list( 'valences', [], 'Valences of atom types (only required for atom types whose valence cannot ' 'be inferred by rdkit, (e.g. "X=7,R=3" if you\'re using "synthetic atoms" ' 'with valences 7 and 3).') flags.DEFINE_list( 'charges', [], 'Charges of atom types (only required for atom types whose charge cannot ' 'be inferred by rdkit, (e.g. "X=0,R=-1" if you\'re using "synthetic atoms" ' 'with valences 0 and -1).') def main(argv): if len(argv) > 1:
from absl import flags import numpy as np import tensorflow.compat.v1 as tf from tensorflow.compat.v1.keras.layers import MaxPooling2D import tensorflow_probability as tfp from tensorflow_probability.python.layers import util as tfp_layers_util tf.compat.v1.enable_v2_tensorshape() FLAGS = flags.FLAGS ## Dataset/method options flags.DEFINE_string('logdir', '/tmp/data', 'directory for summaries and checkpoints.') flags.DEFINE_string('data_dir', None, 'Directory of data files.') get_data_dir = lambda: FLAGS.data_dir flags.DEFINE_list('data', ['train_data_ins.pkl', 'val_data_ins.pkl'], 'data name') flags.DEFINE_integer('update_batch_size', 15, 'number of context/target') flags.DEFINE_integer('meta_batch_size', 10, 'number of tasks') flags.DEFINE_integer('dim_im', 128, 'image size') flags.DEFINE_integer('dim_y', 1, 'dimension of y') ## Training options flags.DEFINE_list('n_hidden_units_g', [100, 100], 'number of tasks sampled per meta-update') flags.DEFINE_list('n_hidden_units_r', [100, 100], 'number of inner gradient updates during test.') flags.DEFINE_integer('dim_z', 200, 'dimension of z') flags.DEFINE_integer('dim_r', 200, 'dimension of r for aggregating') flags.DEFINE_float('update_lr', 5e-4, 'lr') flags.DEFINE_integer('num_updates', 100000, 'num_updates') flags.DEFINE_integer('trial', 1, 'trial number')
from tools.data_handling import get_image_paths, sample_data, load_data import tensorflow as tf import os import argparse FLAGS = flags.FLAGS flags.DEFINE_integer('epochs', 50, 'number of training epochs', lower_bound=0) flags.DEFINE_integer('batch_size', 64, 'batch size for training') flags.DEFINE_float('learning_rate', 1e-3, 'initial learning rate') flags.DEFINE_integer('pixels', 12, 'input size of images', lower_bound=0) flags.DEFINE_integer('training_size', 100000, 'size of the trianing set') flags.DEFINE_integer('validation_size', 40000, 'size of the validation set') flags.DEFINE_list('training_set_split', [ 1, 0, 1, ], 'split of training set: positives, partials, negatives') flags.DEFINE_list( 'validation_set_split', [1, 0, 1], 'split of the validation set: positives, partials, negatives') flags.DEFINE_bool('save_inputs', False, 'whether the input data is saved or not') def main(args): # get image paths training_image_paths = get_image_paths(FLAGS.pixels, 'raw') validation_image_paths = get_image_paths(FLAGS.pixels, 'val')
'Number of pipelines to use.') flags.DEFINE_integer('enterprise_redis_loadgen_clients', 24, 'Number of clients per loadgen vm.') flags.DEFINE_integer('enterprise_redis_max_threads', 40, 'Maximum number of memtier threads to use.') flags.DEFINE_integer('enterprise_redis_min_threads', 18, 'Minimum number of memtier threads to use.') flags.DEFINE_integer('enterprise_redis_thread_increment', 1, 'Number of memtier threads to increment by.') flags.DEFINE_integer( 'enterprise_redis_latency_threshold', 1100, 'The latency threshold in microseconds ' 'until the test stops.') flags.DEFINE_boolean('enterprise_redis_pin_workers', False, 'Whether to pin the proxy threads after startup.') flags.DEFINE_list('enterprise_redis_disable_cpu_ids', None, 'List of cpus to disable by id.') _PACKAGE_NAME = 'redis_enterprise' _LICENSE = 'enterprise_redis_license' _WORKING_DIR = '~/redislabs' _RHEL_TAR = 'redislabs-5.4.2-24-rhel7-x86_64.tar' _XENIAL_TAR = 'redislabs-5.4.2-24-xenial-amd64.tar' _BIONIC_TAR = 'redislabs-5.4.2-24-bionic-amd64.tar' _USERNAME = '******' PREPROVISIONED_DATA = { _RHEL_TAR: '8db83074b3e4e6de9c249ce34b6bb899ed158a6a4801f36c530e79bdb97a4c20', _XENIAL_TAR: 'ef2da8b5eaa02b53488570392df258c0d5d3890a9085c2495aeb5c96f336e639', _BIONIC_TAR: 'ef0c58d6d11683aac07d3f2cae6b9544cb53064c9f7a7419d63b6d14cd858d53',
from midas import Midas import numpy as np import pandas as pd flags.DEFINE_string("input_dir", "", "Input directory for preprocessed SIGTYP files.") flags.DEFINE_string( "training_set_name", const.TRAIN_FILENAME, "Name of the training set. Can be \"train\" or \"train_dev\".") flags.DEFINE_integer("num_epochs", 10, "Number of epochs for training.") flags.DEFINE_integer("batch_size", 8, "Number of examples per batch.") flags.DEFINE_list("layer_structure", ["16", "16"], "Number of nodes per layer.") flags.DEFINE_string("model_dir", "/tmp/MIDAS", "Directory where to store or load the model.") flags.DEFINE_string("output_datasets_dir", "", "Directory for storing datasets with imputed values.") flags.DEFINE_integer("num_datasets", 5, "Number of imputed datasets to generate.") flags.DEFINE_boolean( "save_softmax_columns", False, "Saves the candidate datasets with all the softmax columns for categorical " "data. If disabled, the softmax columns are converted back to the normal " "format.")
from absl import flags flags.DEFINE_enum( "data_format", "example_list_with_context", ["example_list_with_context", "example_in_example", "sequence_example"], "Data format defined in data.py.") flags.DEFINE_string("train_path", None, "Input file path used for training.") flags.DEFINE_string("eval_path", None, "Input file path used for eval.") flags.DEFINE_string("vocab_path", None, "Vocabulary path for query and document tokens.") flags.DEFINE_string("model_dir", None, "Output directory for models.") flags.DEFINE_integer("batch_size", 32, "The batch size for train.") flags.DEFINE_integer("num_train_steps", 15000, "Number of steps for train.") flags.DEFINE_float("learning_rate", 0.05, "Learning rate for optimizer.") flags.DEFINE_float("dropout_rate", 0.8, "The dropout rate before output layer.") flags.DEFINE_list("hidden_layer_dims", ["64", "32", "16"], "Sizes for hidden layers.") flags.DEFINE_integer( "list_size", None, "List size used for training. Use None for dynamic list size.") flags.DEFINE_integer("group_size", 1, "Group size used in score function.") flags.DEFINE_string("loss", "approx_ndcg_loss", "The RankingLossKey for the loss function.") flags.DEFINE_string("weights_feature_name", "", "The name of the feature where unbiased learning-to-rank " "weights are stored.") flags.DEFINE_bool("listwise_inference", False, "If true, exports accept `data_format` while serving.") flags.DEFINE_bool( "use_document_interactions", False, "If true, uses cross-document interactions to generate scores.")
from absl import app from absl import flags import erdos import pylot.flags import pylot.component_creator import pylot.operator_creator from pylot.simulation.scenario.person_avoidance_agent_operator \ import PersonAvoidanceAgentOperator from pylot.simulation.utils import get_world, set_asynchronous_mode FLAGS = flags.FLAGS flags.DEFINE_list('goal_location', '17.73, 327.07, 0.5', 'Ego-vehicle goal location') flags.DEFINE_bool( 'avoidance_agent', True, 'True to enable scenario avoidance agent planner and controller') # The location of the center camera relative to the ego-vehicle. CENTER_CAMERA_LOCATION = pylot.utils.Location(1.5, 0.0, 1.4) def add_avoidance_agent(can_bus_stream, obstacles_stream, ground_obstacles_stream, goal_location): op_config = erdos.OperatorConfig( name=FLAGS.obstacle_detection_model_names[0] + '_agent', flow_watermarks=False, log_file_name=FLAGS.log_file_name, csv_log_file_name=FLAGS.csv_log_file_name, profile_file_name=FLAGS.profile_file_name)