Exemple #1
0
def run_episode(env,
                thing_below,
                goal_thing_below,
                nvm,
                init_regs,
                init_conns,
                penalty_tracker,
                sigma=0):

    # reload blocks
    env.reset()
    env.load_blocks(thing_below)

    # invert goals for nvm
    goal_thing_above = invert(goal_thing_below,
                              num_blocks=len(thing_below),
                              num_bases=len(env.bases))
    for key, val in goal_thing_above.items():
        if val == "none": goal_thing_above[key] = "nil"

    # reset nvm, input new env, mount main program
    nvm.reset_state(init_regs, init_conns)
    memorize_env(nvm, goal_thing_above)
    nvm.mount("main")

    log_prob = 0.0  # accumulate over episode
    log_probs, rewards = [], []

    dbg = False
    if dbg: nvm.dbg()
    target_changed = False
    while True:
        done = nvm.tick()  # reliable if core is not trained
        if dbg: nvm.dbg()
        # if nvm.tick_counter % 100 == 0: print("     tick %d" % nvm.tick_counter)
        if target_changed:
            mu = nvm.registers["jnt"].content
            if sigma > 0:
                dist = tr.distributions.normal.Normal(mu, sigma)
                position = dist.sample()
                log_probs.append(
                    dist.log_prob(position).sum())  # multivariate white noise
                log_prob += log_probs[-1]
            else:
                position = mu

            penalty_tracker.reset()
            # nvm.dbg()
            # print("       pos:", position.detach().numpy())
            nvm.env.goto_position(position.detach().numpy())
            rewards.append(-penalty_tracker.penalty)
            # print("net penalty: %.5f" % penalty_tracker.penalty)
            # input('...')

        tar = nvm.registers["tar"]
        # decode has some robustness to noise even if tar connections are trained
        target_changed = (tar.decode(tar.content) != tar.decode(
            tar.old_content))
        if done: break

    if len(rewards) == 0:  # target never changed
        mu = nvm.registers["jnt"].content
        dist = tr.distributions.normal.Normal(mu, 0.001)
        log_probs.append(dist.log_prob(mu).sum())  # multivariate white noise
        rewards = [-10]

    sym_reward = compute_symbolic_reward(nvm.env, goal_thing_below)
    spa_reward = compute_spatial_reward(nvm.env, goal_thing_below)
    end_reward = calc_reward(sym_reward, spa_reward)
    rewards[-1] += end_reward

    return end_reward, log_prob, rewards, log_probs
Exemple #2
0
                # constant line
                pt.plot([0, len(avg_rewards)], avg_rewards[[0, 0]], 'g-')

        pt.show()

    if showtrained:

        rep = 0
        with open("pac_state_%d.pkl" % rep, "rb") as f:
            (init_regs, init_conns) = pk.load(f)

        env = BlocksWorldEnv(show=True, step_hook=penalty_tracker.step_hook)
        env.load_blocks(thing_below)

        # set up rvm and virtualize
        rvm = make_abstract_machine(env, num_bases, max_levels)
        memorize_env(rvm, goal_thing_above)
        rvm.reset({"jnt": "rest"})
        rvm.mount("main")

        nvm = virtualize(rvm, σ)
        nvm.reset_state(init_regs, init_conns)
        reward, log_prob, rewards, log_probs = run_episode(env,
                                                           thing_below,
                                                           goal_thing_below,
                                                           nvm,
                                                           init_regs,
                                                           init_conns,
                                                           penalty_tracker,
                                                           sigma=0)