def test_register_event(): event = Event() num_calls = {} def callback(): num_calls['a'] = 'a' event.register(callback) event.notify() assert event.notify_count == 1 assert num_calls['a'] == 'a'
class DummyWithWatchedMethod: def __init__(self): self._notify_count = 0 def callback(notifier, property_name, change): self._notify_count += 1 self._notified_property = 0 self.event = Event() self.event.register(callback) @watched_method('event') def notified_method(self): pass @property def notified_property(self): return self._notified_property @notified_property.setter @watched_property('event') def notified_property(self, value): self._notified_property = value
class CTF(HasAcceleratorMixin): """ Contrast transfer function object The Contrast Transfer Function (CTF) describes the aberrations of the objective lens in HRTEM and specifies how the condenser system shapes the probe in STEM. abTEM implements phase aberrations up to 5th order using polar coefficients. See Eq. 2.22 in the reference [1]_. Cartesian coefficients can be converted to polar using the utility function abtem.transfer.cartesian2polar. Partial coherence is included as an envelope in the quasi-coherent approximation. See Chapter 3.2 in reference [1]_. For a more detailed discussion with examples, see our `walkthrough <https://abtem.readthedocs.io/en/latest/walkthrough/05_contrast_transfer_function.html>`_. Parameters ---------- semiangle_cutoff: float The semiangle cutoff describes the sharp Fourier space cutoff due to the objective aperture [mrad]. rolloff: float Softens the cutoff. A value of 0 gives a hard cutoff, while 1 gives the softest possible cutoff [Å]. focal_spread: float The 1/e width of the focal spread due to chromatic aberration and lens current instability [Å]. angular_spread: float The 1/e width of the angular deviations due to source size [Å]. gaussian_spread: The 1/e width image deflections due to vibrations and thermal magnetic noise [Å]. energy: float The electron energy of the wave functions this contrast transfer function will be applied to [eV]. parameters: dict Mapping from aberration symbols to their corresponding values. All aberration magnitudes should be given in Å. kwargs: Provide the aberration coefficients as keyword arguments. References ---------- .. [1] Kirkland, E. J. (2010). Advanced Computing in Electron Microscopy (2nd ed.). Springer. """ def __init__(self, semiangle_cutoff: float = np.inf, rolloff: float = 0.1, focal_spread: float = 0., angular_spread: float = 0., gaussian_spread: float = 0., energy: float = None, parameters: Mapping[str, float] = None, **kwargs): for key in kwargs.keys(): if (key not in polar_symbols) and (key not in polar_aliases.keys()): raise ValueError('{} not a recognized parameter'.format(key)) self.changed = Event() self._accelerator = Accelerator(energy=energy) self._accelerator.changed.register(self.changed.notify) self._semiangle_cutoff = semiangle_cutoff self._rolloff = rolloff self._focal_spread = focal_spread self._angular_spread = angular_spread self._gaussian_spread = gaussian_spread self._parameters = dict(zip(polar_symbols, [0.] * len(polar_symbols))) if parameters is None: parameters = {} parameters.update(kwargs) self.set_parameters(parameters) def parametrization_property(key): def getter(self): return self._parameters[key] def setter(self, value): old = getattr(self, key) self._parameters[key] = value self.changed.notify(**{ 'notifier': self, 'property_name': key, 'change': old != value }) return property(getter, setter) for symbol in polar_symbols: setattr(self.__class__, symbol, parametrization_property(symbol)) for key, value in polar_aliases.items(): if key != 'defocus': setattr(self.__class__, key, parametrization_property(value)) @property def nyquist_sampling(self): return 1 / (4 * self.semiangle_cutoff / self.wavelength * 1e-3) @property def parameters(self): """The parameters.""" return self._parameters @property def defocus(self) -> float: """The defocus [Å].""" return -self._parameters['C10'] @defocus.setter def defocus(self, value: float): self.C10 = -value @property def semiangle_cutoff(self) -> float: """The semi-angle cutoff [mrad].""" return self._semiangle_cutoff @semiangle_cutoff.setter @watched_property('changed') def semiangle_cutoff(self, value: float): self._semiangle_cutoff = value @property def rolloff(self) -> float: """The fraction of soft tapering of the cutoff.""" return self._rolloff @rolloff.setter @watched_property('changed') def rolloff(self, value: float): self._rolloff = value @property def focal_spread(self) -> float: """The focal spread [Å].""" return self._focal_spread @focal_spread.setter @watched_property('changed') def focal_spread(self, value: float): """The angular spread [mrad].""" self._focal_spread = value @property def angular_spread(self) -> float: return self._angular_spread @angular_spread.setter @watched_property('changed') def angular_spread(self, value: float): self._angular_spread = value @property def gaussian_spread(self) -> float: """The Gaussian spread [Å].""" return self._gaussian_spread @gaussian_spread.setter @watched_property('changed') def gaussian_spread(self, value: float): self._gaussian_spread = value @watched_method('changed') def set_parameters(self, parameters: dict): """ Set the phase of the phase aberration. Parameters ---------- parameters: dict Mapping from aberration symbols to their corresponding values. """ for symbol, value in parameters.items(): if symbol in self._parameters.keys(): self._parameters[symbol] = value elif symbol == 'defocus': self._parameters[polar_aliases[symbol]] = -value elif symbol in polar_aliases.keys(): self._parameters[polar_aliases[symbol]] = value else: raise ValueError( '{} not a recognized parameter'.format(symbol)) return parameters def evaluate_aperture( self, alpha: Union[float, np.ndarray]) -> Union[float, np.ndarray]: xp = get_array_module(alpha) semiangle_cutoff = self.semiangle_cutoff / 1000 if self.semiangle_cutoff == xp.inf: return xp.ones_like(alpha) if self.rolloff > 0.: rolloff = self.rolloff * semiangle_cutoff array = .5 * ( 1 + xp.cos(np.pi * (alpha - semiangle_cutoff + rolloff) / rolloff)) array[alpha > semiangle_cutoff] = 0. array = xp.where(alpha > semiangle_cutoff - rolloff, array, xp.ones_like(alpha, dtype=xp.float32)) else: array = xp.array(alpha < semiangle_cutoff).astype(xp.float32) return array def evaluate_temporal_envelope( self, alpha: Union[float, np.ndarray]) -> Union[float, np.ndarray]: xp = get_array_module(alpha) return xp.exp(-(.5 * xp.pi / self.wavelength * self.focal_spread * alpha**2)**2).astype(xp.float32) def evaluate_gaussian_envelope( self, alpha: Union[float, np.ndarray]) -> Union[float, np.ndarray]: xp = get_array_module(alpha) return xp.exp(-.5 * self.gaussian_spread**2 * alpha**2 / self.wavelength**2) def evaluate_spatial_envelope(self, alpha: Union[float, np.ndarray], phi: Union[float, np.ndarray]) -> \ Union[float, np.ndarray]: xp = get_array_module(alpha) p = self.parameters dchi_dk = 2 * xp.pi / self.wavelength * ( (p['C12'] * xp.cos(2. * (phi - p['phi12'])) + p['C10']) * alpha + (p['C23'] * xp.cos(3. * (phi - p['phi23'])) + p['C21'] * xp.cos(1. * (phi - p['phi21']))) * alpha**2 + (p['C34'] * xp.cos(4. * (phi - p['phi34'])) + p['C32'] * xp.cos(2. * (phi - p['phi32'])) + p['C30']) * alpha**3 + (p['C45'] * xp.cos(5. * (phi - p['phi45'])) + p['C43'] * xp.cos(3. * (phi - p['phi43'])) + p['C41'] * xp.cos(1. * (phi - p['phi41']))) * alpha**4 + (p['C56'] * xp.cos(6. * (phi - p['phi56'])) + p['C54'] * xp.cos(4. * (phi - p['phi54'])) + p['C52'] * xp.cos(2. * (phi - p['phi52'])) + p['C50']) * alpha**5) dchi_dphi = -2 * xp.pi / self.wavelength * ( 1 / 2. * (2. * p['C12'] * xp.sin(2. * (phi - p['phi12']))) * alpha + 1 / 3. * (3. * p['C23'] * xp.sin(3. * (phi - p['phi23'])) + 1. * p['C21'] * xp.sin(1. * (phi - p['phi21']))) * alpha**2 + 1 / 4. * (4. * p['C34'] * xp.sin(4. * (phi - p['phi34'])) + 2. * p['C32'] * xp.sin(2. * (phi - p['phi32']))) * alpha**3 + 1 / 5. * (5. * p['C45'] * xp.sin(5. * (phi - p['phi45'])) + 3. * p['C43'] * xp.sin(3. * (phi - p['phi43'])) + 1. * p['C41'] * xp.sin(1. * (phi - p['phi41']))) * alpha**4 + 1 / 6. * (6. * p['C56'] * xp.sin(6. * (phi - p['phi56'])) + 4. * p['C54'] * xp.sin(4. * (phi - p['phi54'])) + 2. * p['C52'] * xp.sin(2. * (phi - p['phi52']))) * alpha**5) return xp.exp(-xp.sign(self.angular_spread) * (self.angular_spread / 2 / 1000)**2 * (dchi_dk**2 + dchi_dphi**2)) def evaluate_chi( self, alpha: Union[float, np.ndarray], phi: Union[float, np.ndarray]) -> Union[float, np.ndarray]: xp = get_array_module(alpha) p = self.parameters alpha2 = alpha**2 alpha = xp.array(alpha) array = xp.zeros(alpha.shape, dtype=np.float32) if any([p[symbol] != 0. for symbol in ('C10', 'C12', 'phi12')]): array += (1 / 2 * alpha2 * (p['C10'] + p['C12'] * xp.cos(2 * (phi - p['phi12'])))) if any( [p[symbol] != 0. for symbol in ('C21', 'phi21', 'C23', 'phi23')]): array += (1 / 3 * alpha2 * alpha * (p['C21'] * xp.cos(phi - p['phi21']) + p['C23'] * xp.cos(3 * (phi - p['phi23'])))) if any([ p[symbol] != 0. for symbol in ('C30', 'C32', 'phi32', 'C34', 'phi34') ]): array += (1 / 4 * alpha2**2 * (p['C30'] + p['C32'] * xp.cos(2 * (phi - p['phi32'])) + p['C34'] * xp.cos(4 * (phi - p['phi34'])))) if any([ p[symbol] != 0. for symbol in ('C41', 'phi41', 'C43', 'phi43', 'C45', 'phi41') ]): array += (1 / 5 * alpha2**2 * alpha * (p['C41'] * xp.cos((phi - p['phi41'])) + p['C43'] * xp.cos(3 * (phi - p['phi43'])) + p['C45'] * xp.cos(5 * (phi - p['phi45'])))) if any([ p[symbol] != 0. for symbol in ('C50', 'C52', 'phi52', 'C54', 'phi54', 'C56', 'phi56') ]): array += (1 / 6 * alpha2**3 * (p['C50'] + p['C52'] * xp.cos(2 * (phi - p['phi52'])) + p['C54'] * xp.cos(4 * (phi - p['phi54'])) + p['C56'] * xp.cos(6 * (phi - p['phi56'])))) array = 2 * xp.pi / self.wavelength * array return array def evaluate_aberrations(self, alpha: Union[float, np.ndarray], phi: Union[float, np.ndarray]) -> \ Union[float, np.ndarray]: xp = get_array_module(alpha) complex_exponential = get_device_function(xp, 'complex_exponential') return complex_exponential(-self.evaluate_chi(alpha, phi)) def evaluate(self, alpha: Union[float, np.ndarray], phi: Union[float, np.ndarray]) -> Union[float, np.ndarray]: array = self.evaluate_aberrations(alpha, phi) if self.semiangle_cutoff < np.inf: array *= self.evaluate_aperture(alpha) if self.focal_spread > 0.: array *= self.evaluate_temporal_envelope(alpha) if self.angular_spread > 0.: array *= self.evaluate_spatial_envelope(alpha, phi) if self.gaussian_spread > 0.: array *= self.evaluate_gaussian_envelope(alpha) return array def evaluate_on_grid(self, grid, xp=np): kx, ky = spatial_frequencies(grid.gpts, grid.sampling) kx = kx.reshape((1, -1, 1)) ky = ky.reshape((1, 1, -1)) kx = xp.asarray(kx) ky = xp.asarray(ky) alpha, phi = polar_coordinates(xp.asarray(kx * self.wavelength), xp.asarray(ky * self.wavelength)) return self.evaluate(alpha, phi) def profiles(self, max_semiangle: float = None, phi: float = 0.): if max_semiangle is None: if self._semiangle_cutoff == np.inf: max_semiangle = 50 else: max_semiangle = self._semiangle_cutoff * 1.6 alpha = np.linspace(0, max_semiangle / 1000., 500) aberrations = self.evaluate_aberrations(alpha, phi) aperture = self.evaluate_aperture(alpha) temporal_envelope = self.evaluate_temporal_envelope(alpha) spatial_envelope = self.evaluate_spatial_envelope(alpha, phi) gaussian_envelope = self.evaluate_gaussian_envelope(alpha) envelope = aperture * temporal_envelope * spatial_envelope * gaussian_envelope calibration = Calibration(offset=0., sampling=(alpha[1] - alpha[0]) * 1000., units='mrad', name='alpha') profiles = {} profiles['ctf'] = Measurement(aberrations.imag * envelope, calibrations=[calibration], name='CTF') profiles['aperture'] = Measurement(aperture, calibrations=[calibration], name='Aperture') profiles['temporal_envelope'] = Measurement(temporal_envelope, calibrations=[calibration], name='Temporal') profiles['spatial_envelope'] = Measurement(spatial_envelope, calibrations=[calibration], name='Spatial') profiles['gaussian_spread'] = Measurement(gaussian_envelope, calibrations=[calibration], name='Gaussian') profiles['envelope'] = Measurement(envelope, calibrations=[calibration], name='Envelope') return profiles def apply(self, waves, interact=False, sliders=None, throttling=0.): from abtem.visualize.bqplot import show_measurement_2d from abtem.visualize.widgets import quick_sliders, throttle import ipywidgets as widgets if interact: image_waves = waves.copy() def update(): image_waves._array[:] = waves.apply_ctf(self).array return image_waves.intensity() figure, callback = show_measurement_2d(update) if throttling: callback = throttle(throttling)(callback) self.changed.register(callback) if sliders: sliders = quick_sliders(self, **sliders) figure = widgets.HBox([figure, widgets.VBox(sliders)]) return image_waves, figure else: if sliders: raise RuntimeError() return waves.apply_ctf(self) def interact(self, max_semiangle: float = None, phi: float = 0., sliders=None, throttling=False): import bqplot.pyplot as plt from abtem.visualize.bqplot import show_measurement_1d from abtem.visualize.widgets import quick_sliders, throttle import ipywidgets as widgets figure = plt.figure(fig_margin={ 'top': 0, 'bottom': 50, 'left': 50, 'right': 0 }) figure.layout.height = '250px' figure.layout.width = '300px' _, callback = show_measurement_1d( lambda: self.profiles(max_semiangle, phi).values(), figure) if throttling: callback = throttle(throttling)(callback) self.changed.register(callback) if sliders: sliders = quick_sliders(self, **sliders) return widgets.HBox([figure, widgets.VBox(sliders)]) else: return figure def show(self, max_semiangle: float = None, phi: float = 0, ax=None, **kwargs): """ Show the contrast transfer function. Parameters ---------- max_semiangle: float Maximum semiangle to display in the plot. ax: matplotlib Axes, optional If given, the plot will be added to this matplotlib axes. phi: float, optional The contrast transfer function will be plotted along this angle. Default is 0. n: int, optional Number of evaluation points to use in the plot. Default is 1000. title: str, optional The title of the plot. Default is 'None'. kwargs: Additional keyword arguments for the line plots. """ import matplotlib.pyplot as plt if ax is None: ax = plt.subplot() for key, profile in self.profiles(max_semiangle, phi).items(): if not np.all(profile.array == 1.): ax, lines = profile.show(legend=True, ax=ax, **kwargs) return ax def copy(self): parameters = self.parameters.copy() return self.__class__(semiangle_cutoff=self.semiangle_cutoff, rolloff=self.rolloff, focal_spread=self.focal_spread, angular_spread=self.angular_spread, gaussian_spread=self.gaussian_spread, energy=self.energy, parameters=parameters)
class CrystalPotential(AbstractPotential): """ Crystal potential object The crystal potential may be used to represent a potential consisting of a repeating unit. This may allow calculations to be performed with lower memory and computational cost. The crystal potential has an additional function in conjunction with frozen phonon calculations. The number of frozen phonon configurations are not given by the FrozenPhonon objects, rather the ensemble of frozen phonon potentials represented by a potential with frozen phonons represent a collection of units, which will be assembled randomly to represent a random potential. The number of frozen phonon configurations should be given explicitely. This may save computational cost since a smaller number of units can be combined to a larger frozen phonon ensemble. Parameters ---------- potential_unit : AbstractPotential The potential unit that repeated will create the full potential. repetitions : three int The repetitions of the potential in x, y and z. num_frozen_phonon_configs : int Number of frozen phonon configurations. """ def __init__(self, potential_unit: AbstractPotential, repetitions: Tuple[int, int, int], num_frozen_phonon_configs: int = 1): self._potential_unit = potential_unit self.repetitions = repetitions self._num_frozen_phonon_configs = num_frozen_phonon_configs if (potential_unit.num_frozen_phonon_configs == 1) & (num_frozen_phonon_configs > 1): warnings.warn( '"num_frozen_phonon_configs" is greater than one, but the potential unit does not have' 'frozen phonons') if (potential_unit.num_frozen_phonon_configs > 1) & (num_frozen_phonon_configs == 1): warnings.warn( 'the potential unit has frozen phonons, but "num_frozen_phonon_configs" is set to 1' ) self._cache = Cache(1) self._changed = Event() gpts = (self._potential_unit.gpts[0] * self.repetitions[0], self._potential_unit.gpts[1] * self.repetitions[1]) extent = (self._potential_unit.extent[0] * self.repetitions[0], self._potential_unit.extent[1] * self.repetitions[1]) self._grid = Grid(extent=extent, gpts=gpts, sampling=self._potential_unit.sampling, lock_extent=True) self._grid.changed.register(self._changed.notify) self._changed.register(cache_clear_callback(self._cache)) super().__init__(precalculate=False) @HasGridMixin.gpts.setter def gpts(self, gpts): if not ((gpts[0] % self.repetitions[0] == 0) and (gpts[1] % self.repetitions[0] == 0)): raise ValueError( 'gpts must be divisible by the number of potential repetitions' ) self.grid.gpts = gpts self._potential_unit.gpts = (gpts[0] // self._repetitions[0], gpts[1] // self._repetitions[1]) @HasGridMixin.sampling.setter def sampling(self, sampling): self.sampling = sampling self._potential_unit.sampling = sampling @property def num_frozen_phonon_configs(self): return self._num_frozen_phonon_configs def generate_frozen_phonon_potentials(self, pbar=False): for i in range(self.num_frozen_phonon_configs): yield self @property def repetitions(self) -> Tuple[int, int, int]: return self._repetitions @repetitions.setter def repetitions(self, repetitions: Tuple[int, int, int]): repetitions = tuple(repetitions) if len(repetitions) != 3: raise ValueError('repetitions must be sequence of length 3') self._repetitions = repetitions @property def num_slices(self) -> int: return self._potential_unit.num_slices * self.repetitions[2] def get_slice_thickness(self, i) -> float: return self._potential_unit.get_slice_thickness(i) @cached_method('_cache') def _calculate_configs(self, energy, max_batch=1): potential_generators = self._potential_unit.generate_frozen_phonon_potentials( pbar=False) potential_configs = [] for potential in potential_generators: if isinstance(potential, AbstractPotentialBuilder): potential = potential.build(max_batch=max_batch) elif not isinstance(potential, PotentialArray): raise RuntimeError() if energy is not None: potential = potential.as_transmission_function( energy=energy, max_batch=max_batch) potential = potential.tile(self.repetitions[:2]) potential_configs.append(potential) return potential_configs def _generate_slices_base(self, first_slice=0, last_slice=None, max_batch=1, energy=None): first_layer = first_slice // self._potential_unit.num_slices if last_slice is None: last_layer = self.repetitions[2] else: last_layer = last_slice // self._potential_unit.num_slices first_slice = first_slice % self._potential_unit.num_slices last_slice = None configs = self._calculate_configs(energy, max_batch) if len(configs) == 1: layers = configs * self.repetitions[2] else: layers = [ configs[np.random.randint(len(configs))] for _ in range(self.repetitions[2]) ] for layer_num, layer in enumerate(layers[first_layer:last_layer]): if layer_num == last_layer: last_slice = last_slice % self._potential_unit.num_slices for start, end, potential_slice in layer.generate_slices( first_slice=first_slice, last_slice=last_slice, max_batch=max_batch): yield layer_num + start, layer_num + end, potential_slice first_slice = 0 def generate_slices(self, first_slice=0, last_slice=None, max_batch=1): return self._generate_slices_base(first_slice=first_slice, last_slice=last_slice, max_batch=max_batch) def generate_transmission_functions(self, energy, first_slice=0, last_slice=None, max_batch=1): return self._generate_slices_base(first_slice=first_slice, last_slice=last_slice, max_batch=max_batch, energy=energy)