Exemple #1
0
def sample_935_2():
    """
    9.3.5_2 不同权重的评分: 只考虑胜率
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print(
            '../gen/score_tuple_array not exist! please execute sample_933 first!'
        )
        return
    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 只有第一项为1,其他都是0代表只考虑胜率来评分
    scorer = WrsmScorer(score_tuple_array, weights=[1, 0, 0, 0])
    # 返回按照评分排序后的队列
    scorer_returns_max = scorer.fit_score()
    # index[-1]为最优参数序号
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=False)

    # 最后打印出只考虑胜率下最优结果使用的买入策略和卖出策略
    print(
        'best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n',
        best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors)
Exemple #2
0
def sample_934():
    """
    9.3.4 度量结果的评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print(
            '../gen/score_tuple_array not exist! please execute sample_933 first!'
        )
        return
    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)
    from abupy import WrsmScorer
    # 实例化一个评分类WrsmScorer,它的参数为之前GridSearch返回的score_tuple_array对象
    scorer = WrsmScorer(score_tuple_array)
    print('scorer.score_pd.tail():\n', scorer.score_pd.tail())

    # score_tuple_array[658]与grid_search.best_score_tuple_grid是一致的
    sfs = scorer.fit_score()
    # 打印前15个高分组合
    print('sfs[::-1][:15]:\n', sfs[::-1][:15])
Exemple #3
0
def sample_935_2():
    """
    9.3.5_2 不同权重的评分: 只考虑胜率
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 只有第一项为1,其他都是0代表只考虑胜率来评分
    scorer = WrsmScorer(score_tuple_array, weights=[1, 0, 0, 0])
    # 返回按照评分排序后的队列
    scorer_returns_max = scorer.fit_score()
    # index[-1]为最优参数序号
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=False)

    # 最后打印出只考虑胜率下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
Exemple #4
0
def sample_935_1():
    """
    9.3.5_1 不同权重的评分: 只考虑投资回报来评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 实例化WrsmScorer,参数weights,只有第二项为1,其他都是0,
    # 代表只考虑投资回报来评分
    scorer = WrsmScorer(score_tuple_array, weights=[0, 1, 0, 0])
    # 返回排序后的队列
    scorer_returns_max = scorer.fit_score()
    # 因为是倒序排序,所以index最后一个为最优参数
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    # 由于篇幅,最优结果只打印文字信息
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=True)

    # 最后打印出只考虑投资回报下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
Exemple #5
0
Fichier : c9.py Projet : zly111/abu
def sample_935_1():
    """
    9.3.5_1 不同权重的评分: 只考虑投资回报来评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)

    from abupy import WrsmScorer
    # 实例化WrsmScorer,参数weights,只有第二项为1,其他都是0,
    # 代表只考虑投资回报来评分
    scorer = WrsmScorer(score_tuple_array, weights=[0, 1, 0, 0])
    # 返回排序后的队列
    scorer_returns_max = scorer.fit_score()
    # 因为是倒序排序,所以index最后一个为最优参数
    best_score_tuple_grid = score_tuple_array[scorer_returns_max.index[-1]]
    # 由于篇幅,最优结果只打印文字信息
    AbuMetricsBase.show_general(best_score_tuple_grid.orders_pd,
                                best_score_tuple_grid.action_pd,
                                best_score_tuple_grid.capital,
                                best_score_tuple_grid.benchmark,
                                only_info=True)

    # 最后打印出只考虑投资回报下最优结果使用的买入策略和卖出策略
    print('best_score_tuple_grid.buy_factors, best_score_tuple_grid.sell_factors:\n', best_score_tuple_grid.buy_factors,
          best_score_tuple_grid.sell_factors)
Exemple #6
0
def sample_934():
    """
    9.3.4 度量结果的评分
    :return:
    """
    from abupy import ABuFileUtil
    score_fn = '../gen/score_tuple_array'
    if not ABuFileUtil.file_exist(score_fn):
        print('../gen/score_tuple_array not exist! please execute sample_933 first!')
        return

    """
        直接读取本地序列化文件
    """
    score_tuple_array = ABuFileUtil.load_pickle(score_fn)
    from abupy import WrsmScorer
    # 实例化一个评分类WrsmScorer,它的参数为之前GridSearch返回的score_tuple_array对象
    scorer = WrsmScorer(score_tuple_array)
    print('scorer.score_pd.tail():\n', scorer.score_pd.tail())

    # score_tuple_array[658]与grid_search.best_score_tuple_grid是一致的
    sfs = scorer.fit_score()
    # 打印前15个高分组合
    print('sfs[::-1][:15]:\n', sfs[::-1][:15])