Exemple #1
0
def joint_learning():

    X2 = fun2('number_age_col85tran_v2.csv')
    print(X2.shape)
    y = fun2('number_category.csv')
    nb_x_train = fun3(f_in='nb_x_train_%d.dat' % (data_version))
    nb_x_test = fun3(f_in='nb_x_test_%d.dat' % (data_version))
    X_train, X_test, y_train, y_test, = get_train_test_data(
        X2,
        y,
        nb_x_train,
        nb_x_test,
    )

    temp_1_10 = fun2('front_1_10_temp.csv')
    temp_2_11 = fun2('front_2_11_temp.csv')

    temp_1_10_train, temp_1_10_test, temp_2_11_train, temp_2_11_test = get_train_test_data(
        temp_1_10, temp_2_11, nb_x_train, nb_x_test)
    temp_1_10_train = reshape_dataset(temp_1_10_train)
    temp_2_11_train = reshape_dataset(temp_2_11_train)
    temp_1_10_test = reshape_dataset(temp_1_10_test)
    temp_2_11_test = reshape_dataset(temp_2_11_test)
    print(temp_1_10_train.shape)

    # x_train represents list temperature
    # x2_train represents test parameter
    x_train = X_train[:, in_file_length + 1:]
    x2_train = X_train[:, 0:in_file_length]

    x_test = X_test[:, in_file_length + 1:]
    x2_test = X_test[:, 0:in_file_length]

    print((sum(y_test) - len(y_test)) / len(y_test))
    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)

    model = joint_learning_model()
    mse_list = []
    acc_list = []
    for epoch in range(nb_epochs):
        print('Train...')
        model.fit([temp_1_10_train, x_train, x2_train],
                  [temp_2_11_train, y_train],
                  batch_size=batch_size,
                  nb_epoch=1,
                  shuffle=True)
        loss, mse, acc = model.evaluate([temp_1_10_test, x_test, x2_test],
                                        [temp_2_11_test, y_test],
                                        batch_size=batch_size)
        print('loss:', loss)
        print('mse:', mse)
        print('acc:', acc)
Exemple #2
0
def dense_temp(f_in):
    X = diff_length_dat(f_in)
    X = np.array(X, dtype=float)
    y = fun2('number_category.csv')
    x_train, x_test, y_train, y_test = cross_validation.train_test_split(
        X, y, test_size=0.2)
    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)

    model = Sequential()
    model.add(Dense(nb_classes, input_shape=(15, )))
    model.add(Dropout(0.1))
    model.add(Activation('sigmoid'))
    model.compile(loss='binary_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    model.summary()

    acc_list = []
    score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
    acc_list.append(acc)
    for epoch in range(nb_epochs):
        print('Train...')
        model.fit(x_train,
                  y_train,
                  batch_size=batch_size,
                  nb_epoch=1,
                  validation_split=0.05)
        score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
        acc_list.append(acc)
        # print(model.predict_proba(X))
        print('\nTest score:', score)
        print('Test accuracy:', acc)
    plot(range(0, nb_epochs + 1), acc_list)
    show()
Exemple #3
0
def pure_temp_prediction():
    X = diff_length_csv('tiwencheck.csv')
    X = np.array(X)
    y = fun2('number_category.csv')
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(
        X, y, test_size=0.2)
    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)

    x_train = reshape_dataset(X_train)
    x_test = reshape_dataset(X_test)
    model = Sequential()
    model.add(LSTM(16, input_shape=(12, 1)))
    model.add(Dropout(0.25))
    model.add(Dense(nb_classes, bias=False))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    model.summary()

    print('Train...')
    model.fit(x_train,
              y_train,
              batch_size=batch_size,
              nb_epoch=5,
              validation_split=0.05)
    score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
    print(model.predict_proba(reshape_dataset(X)))
    print('Test score:', score)
    print('Test accuracy:', acc)
def para_prediction(f_x='number_age_col85tran_v2.csv',in_file_length=87):
    X = fun2(f_x)
    y = fun2('number_category.csv')
    nb_x_train = fun3(f_in='nb_x_train_%d.dat' % data_version)
    nb_x_test = fun3(f_in='nb_x_test_%d.dat' % data_version)
    x_train, x_test, y_train, y_test = get_train_test_data(X, y, nb_x_train, nb_x_test, )

    probability_test = (sum(y_test) - len(y_test)) / len(y_test)
    print('probability_test:', probability_test)
    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)

    # get_model
    model = get_model(in_file_length)

    print('Train...')
    acc_list = []
    score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
    acc_list.append(acc)
    for epoch in range(nb_epochs):
        # print('Train...')
        model.fit(x_train, y_train, batch_size=batch_size, nb_epoch=1, validation_split=0.05)
        score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
        acc_list.append(acc)

        print('Test score:', score)
        print('Test accuracy:', acc)
    results = ""
    for i, acc in enumerate(acc_list):
        if acc > 0.72:
            if acc > 0.74:
                results += '\033[1;31m' + str(i + 1) + ':' + str(acc) + '\033[0m' + '; '
            else:
                results += '\033[1;34m' + str(i + 1) + ':' + str(acc) + '\033[0m' + '; '
        else:
            results += str(i + 1) + ':' + str(acc) + '; '
    print(results)
    subplot(2,3,data_version)
    title('para_prediction_dataset_%d'%(data_version))
    plot(range(0, nb_epochs + 1), acc_list,label='length:%d'%(in_file_length))
    acc_list = sorted(acc_list, reverse=True)
    print(acc_list)
    print("top-K mean: %.3f" % np.mean(np.array(acc_list[:10])))
Exemple #5
0
def temp_lstm(f_in='5_day_50_check.csv'):
    if f_in[-1] == 't':
        X = diff_length_dat(f_in)
    else:
        X = diff_length_csv(f_in)
    X = pad_sequences(X,
                      maxlen=maxlen,
                      padding='post',
                      truncating='post',
                      value=0,
                      dtype=float)
    X = np.array(X, dtype=float)
    # print(X[0])

    y = fun2('number_category.csv')
    nb_x_train = fun3(f_in='nb_x_train_%d.dat' % (data_version))
    nb_x_test = fun3(f_in='nb_x_test_%d.dat' % (data_version))
    x_train, x_test, y_train, y_test = get_train_test_data(
        X, y, nb_x_train, nb_x_test)
    probability_test = (sum(y_test) - len(y_test)) / len(y_test)
    print('probability_test:', probability_test)

    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)

    #get_model
    model = conv_lstm_model()

    #evaluation
    acc_list = []
    score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
    acc_list.append(acc)
    print('Train...')
    for epoch in range(nb_epochs):
        model.fit(x_train,
                  y_train,
                  batch_size=batch_size,
                  verbose=0,
                  nb_epoch=1,
                  shuffle=True)
        score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
        acc_list.append(acc)
        print('Test score:', score)
        print('Test accuracy:', acc)
    subplot(2, 3, data_version)
    plot(range(0, nb_epochs + 1),
         [probability_test for i in range(0, nb_epochs + 1)])
    plot(range(0, nb_epochs + 1), acc_list)
    acc_list = sorted(acc_list, reverse=True)
    title('temp_pre_conv_dataset_%d' % (data_version))
    print("top-K mean: %.3f" % np.mean(np.array(acc_list[:10])))
Exemple #6
0
def temp(f_in='5_day_50_check.csv'):
    if f_in[-1] == 't':
        X = diff_length_dat(f_in)
    else:
        X = diff_length_csv(f_in)
    X = np.array(X, dtype=float)
    print(X.shape)

    y = fun2('number_category.csv')
    x_train, x_test, y_train, y_test = cross_validation.train_test_split(
        X, y, test_size=0.2)
    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)

    model = Sequential()
    model.add(
        Reshape(input_shape=(temp_length, ), target_shape=(temp_length, 1)))
    model.add(
        Convolution1D(border_mode='same', filter_length=2,
                      nb_filter=nb_filter))
    model.add(Reshape(target_shape=(temp_length * nb_filter, )))
    model.add(Dense(32))
    model.add(Dropout(0.5))
    model.add(Activation('relu'))
    model.add(Dense(nb_classes))
    model.add(Activation('sigmoid'))

    # model2=Sequential()
    # model2.add(Dense(input_shape=(50,),output_dim=3))
    # model2.add(Merge([model,model2]))

    model.compile(loss='binary_crossentropy',
                  optimizer=Adam(lr=0.001),
                  metrics=['accuracy'])
    model.summary()
    for epoch in range(nb_epochs):
        print('Train...')
        model.fit(x_train,
                  y_train,
                  batch_size=batch_size,
                  nb_epoch=1,
                  validation_split=0.05)
        score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
        # print(model.predict_proba(X))
        print('\nTest score:', score)
        print('Test accuracy:', acc)
Exemple #7
0
def temp_lstm_2(f_in='5_day_50_check.csv'):
    if f_in[-1] == 't':
        X = diff_length_dat(f_in)
    else:
        X = diff_length_csv(f_in)
    X = np.array(X, dtype=float)
    print(X.shape)
    y = fun2('number_category.csv')
    y = y - 1
    x_train, x_test, y_train, y_test = cross_validation.train_test_split(
        X, y, test_size=0.2)

    model = Sequential()
    model.add(
        Reshape(input_shape=(temp_length, ), target_shape=(temp_length, 1)))
    model.add(LSTM(16, ))
    model.add(Dense(32, ))
    model.add(Dropout(0.4))
    model.add(Activation('relu'))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    model.compile(loss='binary_crossentropy',
                  optimizer=Adam(lr=0.002),
                  metrics=['accuracy'])
    model.summary()
    acc_list = []
    score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
    acc_list.append(acc)
    for epoch in range(nb_epochs):
        print('Train...')
        model.fit(x_train,
                  y_train,
                  batch_size=batch_size,
                  nb_epoch=1,
                  validation_split=0.05)
        score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
        acc_list.append(acc)
        print(model.predict_classes(X))
        # print(model.predict_proba(X))
        print('\nTest score:', score)
        print('Test accuracy:', acc)
    plot(range(0, nb_epochs + 1), acc_list)
    show()
Exemple #8
0
def length_temp_prediction():
    X = diff_length_csv('5_day_50_check.csv')
    # X=fun2('5_day_50_check.csv')
    # X = pad_sequences(X, maxlen=maxlen, padding='post', truncating='post', dtype='float')
    X = np.array(X, dtype=float)

    y = fun2('number_category.csv')
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(
        X, y, test_size=0.2)
    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)

    x_train = reshape_dataset(X_train)
    x_test = reshape_dataset(X_test)

    model = Sequential()
    # model.add(Masking(mask_value=0, input_shape=(maxlen, 1)))
    model.add(LSTM(3, input_shape=(maxlen, 1), return_sequences=True))
    model.add(Dropout(0.25))
    model.add(Reshape((maxlen * 3, )))
    model.add(Dense(nb_classes, b_regularizer=l1(0.01)))
    model.add(Dropout(0.25))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    model.summary()

    print('Train...')
    model.fit(x_train,
              y_train,
              batch_size=batch_size,
              nb_epoch=30,
              validation_split=0.05)
    score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
    print(model.predict_proba(reshape_dataset(X)))
    print('Test score:', score)
    print('Test accuracy:', acc)
Exemple #9
0
def fft_prediction(f_in='5_day_50_check.csv'):
    if f_in[-1] == 't':
        X = diff_length_dat(f_in)
    else:
        X = diff_length_csv(f_in)
    X = np.array(X, dtype=float)

    y = fun2('number_category.csv')
    nb_x_train = fun3(f_in='nb_train_%d.dat' % (data_version))
    nb_x_test = fun3(f_in='nb_test_%d.dat' % (data_version))
    nb_x_validation = fun3(f_in='nb_validation_%d.dat' % (data_version))
    x_train, x_test, x_validation, y_train, y_test, y_validation = get_train_validation_test_data(
        X, y, nb_x_train, nb_x_test, nb_x_validation)
    x_train, x_test, x_validation = fft_function(x_train, x_test, x_validation)
    probability_validation = (sum(y_validation) -
                              len(y_validation)) / len(y_validation)
    probability_test = (sum(y_test) - len(y_test)) / len(y_test)
    print('probability_validation:', probability_validation)

    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)
    y_validation = category_to_target(y_validation)

    #get_model
    model = fft_model()

    #evaluation
    best_epoch = 0
    best_acc = probability_validation
    acc_list = []
    score, acc = model.evaluate(x_validation,
                                y_validation,
                                batch_size=batch_size)
    acc_list.append(acc)
    print('Train...')
    for epoch in range(nb_epochs):
        model.fit(x_train,
                  y_train,
                  batch_size=batch_size,
                  verbose=0,
                  nb_epoch=1,
                  shuffle=True)
        score, acc = model.evaluate(x_validation,
                                    y_validation,
                                    batch_size=batch_size)
        acc_list.append(acc)
        print('Test score:', score)
        print('Test accuracy:', acc)

        if acc > best_acc:
            best_acc = acc
            model.save_weights('temp_dataset_%d_epoch_%d.h5' %
                               (data_version, epoch))
            if best_epoch != 0:
                os.remove('temp_dataset_%d_epoch_%d.h5' %
                          (data_version, best_epoch))
            best_epoch = epoch

    plot(range(0, nb_epochs + 1), acc_list)
    plot(range(0, nb_epochs + 1),
         [probability_validation for i in range(0, nb_epochs + 1)])
    savefig('fft_temp_dataset_%d.png' % (data_version))
    show()
    print(best_epoch)
    print(best_acc)
    #test
    model.load_weights('temp_dataset_%d_epoch_%d.h5' %
                       (data_version, best_epoch))
    score, acc = model.evaluate(x_test, y_test, batch_size=batch_size)
    print('Test score:', score)
    print('probabitity_test:', probability_test)
    print('Test accuracy:', acc)
Exemple #10
0
                  loss_weights={
                      'dense_softmax': 0.1,
                      'dense_temp': 1
                  })
    model.summary()

    return model


if __name__ == '__main__':
    model = merge_predict_next_temp_model()

    temp_x, temp_y = get_train_fun()
    # X = fun2('number_age_col85tran_v2.csv')
    # X = fun2('number_age_col71tran_v2.csv')
    X = fun2('cap_feature_2.csv')
    print(X.shape)
    y = fun2('number_category.csv')
    nb_x_train = fun3(f_in='nb_x_train_%d.dat' % (data_version))
    nb_x_test = fun3(f_in='nb_x_test_%d.dat' % (data_version))

    X_train, X_test, y_train, y_test, = get_train_test_data(
        X,
        y,
        nb_x_train,
        nb_x_test,
    )
    print(X_train.shape)

    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)
Exemple #11
0
              ))
    # model.add(Dense(nb_classes,W_regularizer=l2(0.01)))
    # model.add(Dense(16, activation='relu'))
    # model.add(Dropout(0.1))
    # model.add(Dense(2))
    # model.add(Dense(nb_classes,input_dim=in_file_length,W_regularizer=l2(0.01), b_regularizer=l2(0.01)))
    model.add(Activation('softmax'))
    model.compile(loss='categorical_crossentropy',
                  optimizer=Adam(lr=0.0005),
                  metrics=['accuracy'])
    model.summary()
    return model


if __name__ == '__main__':
    X = fun2('number_age_col85tran.csv')
    y = fun2('number_category.csv')
    nb_x_train = fun3(f_in='nb_train_%d.dat' % data_version)
    nb_x_test = fun3(f_in='nb_test_%d.dat' % data_version)
    nb_x_validation = fun3(f_in='nb_validation_%d.dat' % (data_version))
    x_train, x_test, x_validation, y_train, y_test, y_validation = get_train_validation_test_data(
        X, y, nb_x_train, nb_x_test, nb_x_validation)
    probability_validation = (sum(y_validation) -
                              len(y_validation)) / len(y_validation)
    probability_test = (sum(y_test) - len(y_test)) / len(y_test)
    print('probability_validation:', probability_validation)
    print('probability_test:', probability_test)
    y_train = category_to_target(y_train)
    y_test = category_to_target(y_test)
    y_validation = category_to_target(y_validation)