def get_cosine_test_vector(): '''Get a max amplitude cosine test vector to try saturate the pipeline with.''' t = np.linspace(0, 1, 16000) f = 20 # Hz A = 2**15 - 1 # max 16b signed amplitude x = A * np.cos(2 * np.pi * f * t) x = aco.pdm_model(x, 'fast') sigs = aco.aco(x) return x, sigs
def get_multi_cosine_test_vector(): '''Get a max amplitude cosine test vector to try saturate the pipeline with.''' t = np.linspace(0, 1, 16000) n_freqs = 100 freqs = np.logspace(0, np.log10(16000), 10) A = (2**15 - 1) / n_freqs # max 16b signed amplitude x = np.zeros(16000) for f in freqs: x += A * np.cos(2 * np.pi * f * t) x = aco.pdm_model(x, 'fast') sigs = aco.aco(x) return x, sigs
def get_random_sample_test_vector(test_num): top_dir = '../../../py/' categories = ['yes/', 'noise/', 'no/', 'unknown/'] category = categories[test_num % 4] sample_dir = top_dir + category fnames = os.listdir(sample_dir) idx = np.random.randint(len(fnames)) fname = sample_dir + fnames[idx] print('Running test with', fname) x = pdm.read_sample_file(fname) x = aco.pdm_model(x, 'fast') sigs = aco.aco(x) return x, sigs
def get_random_test_vector(): x = np.random.randint(-2**15, 2**15 - 1, size=16000) x = aco.pdm_model(x, 'fast') sigs = aco.aco(x) return x, sigs
def get_sample_test_vector(): '''Get a real audio sample for input and calculate the expected outputs.''' x = pdm.read_sample_file(pdm.SAMPLE_FNAME) x_distorted = aco.pdm_model(x, 'fast') sigs = aco.aco(x_distorted) return x_distorted, sigs