Exemple #1
0
def fbeamformers():
    bb = BeamformerBase(freq_data=f, steer=st, r_diag=True, cached=False)
    be = BeamformerEig(freq_data=f, steer=st, r_diag=True, n=54, cached=False)

    #frequency beamformers to test
    bbase = BeamformerBase(freq_data=f, steer=st, r_diag=True, cached=False)
    bc = BeamformerCapon(freq_data=f, steer=st, cached=False)
    beig = BeamformerEig(freq_data=f,
                         steer=st,
                         r_diag=True,
                         n=54,
                         cached=False)
    bm = BeamformerMusic(freq_data=f, steer=st, n=6, cached=False)
    bd = BeamformerDamas(beamformer=bb, n_iter=10, cached=False)
    bdp = BeamformerDamasPlus(beamformer=bb, n_iter=100, cached=False)
    bo = BeamformerOrth(beamformer=be,
                        eva_list=list(range(38, 54)),
                        cached=False)
    bs = BeamformerCleansc(freq_data=f, steer=st, r_diag=True, cached=False)
    bcmf = BeamformerCMF(freq_data=f,
                         steer=st,
                         method='LassoLarsBIC',
                         cached=False)
    bl = BeamformerClean(beamformer=bb, n_iter=10, cached=False)
    bf = BeamformerFunctional(freq_data=f,
                              steer=st,
                              r_diag=False,
                              gamma=3,
                              cached=False)
    bgib = BeamformerGIB(freq_data=f,
                         steer=st,
                         method='LassoLars',
                         n=2,
                         cached=False)
    return (bbase, bc, beig, bm, bl, bo, bs, bd, bcmf, bf, bdp, bgib)
Exemple #2
0
    block_size=128,  #FFT-parameters
    ind_low=8,
    ind_high=16)  #to save computational effort, only
# frequencies with indices 8..15 are used

#===============================================================================
# different beamformers in frequency domain
#===============================================================================
bb = BeamformerBase(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
bc = BeamformerCapon(freq_data=f, grid=g, mpos=m, c=346.04, cached=False)
be = BeamformerEig(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, n=54)
bm = BeamformerMusic(freq_data=f, grid=g, mpos=m, c=346.04, n=6)
bd = BeamformerDamas(beamformer=bb, n_iter=100)
bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54)))
bs = BeamformerCleansc(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04)
bcmf = BeamformerCMF(freq_data=f, grid=g, mpos=m, c=346.04, \
    method='LassoLarsBIC')
bl = BeamformerClean(beamformer=bb, n_iter=100)
bf = BeamformerFunctional(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, \
    gamma=4)

#===============================================================================
# plot result maps for different beamformers in frequency domain
#===============================================================================
figure(1, (10, 6))
i1 = 1  #no of subplot
for b in (bb, bc, be, bm, bl, bo, bs, bd, bcmf, bf):
    subplot(3, 4, i1)
    i1 += 1
    map = b.synthetic(cfreq, 1)
    mx = L_p(map.max())
    imshow(L_p(map.T),
Exemple #3
0
# eigenvalues and eigenvectors, if only the matrix is needed then class
# PowerSpectra can be used instead
#===============================================================================
f = EigSpectra(
    time_data=t1,
    window='Hanning',
    overlap='50%',
    block_size=256,  #FFT-parameters
    ind_low=15,
    ind_high=31)  #to save computational effort, only
# frequencies with index 15-31 are used

#===============================================================================
# beamformers in frequency domain
#===============================================================================
b = BeamformerCMF(freq_data=f, grid=g, mpos=m, c=346.04, alpha=1e-8)

#===============================================================================
# plot result maps for different beamformers in frequency domain
#===============================================================================
figure(1)  #no of figure
i1 = 1  #no of subplot
from time import time
for method in ('LassoLars', 'LassoLarsBIC', \
        'OMPCV', 'NNLS'):
    b.method = method
    subplot(2, 2, i1)
    i1 += 1
    ti = time()
    map = b.synthetic(cfreq, 1)
    print time() - ti
Exemple #4
0
    time_data=t1,
    window='Hanning',
    overlap='50%',
    block_size=128,  #FFT-parameters
    cached=False)  #cached = False

bb = BeamformerBase(freq_data=f, steer=st, r_diag=True, cached=False)
bc = BeamformerCapon(freq_data=f, steer=st, cached=False)
be = BeamformerEig(freq_data=f, steer=st, r_diag=True, n=54, cached=False)
bm = BeamformerMusic(freq_data=f, steer=st, n=6, cached=False)
bd = BeamformerDamas(beamformer=bb, n_iter=100, cached=False)
bdp = BeamformerDamasPlus(beamformer=bb, n_iter=100, cached=False)
bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54)), cached=False)
bs = BeamformerCleansc(freq_data=f, steer=st, r_diag=True, cached=False)
bcmf = BeamformerCMF(freq_data=f,
                     steer=st,
                     method='LassoLarsBIC',
                     cached=False)
bl = BeamformerClean(beamformer=bb, n_iter=100, cached=False)
bf = BeamformerFunctional(freq_data=f,
                          steer=st,
                          r_diag=False,
                          gamma=4,
                          cached=False)
bgib = BeamformerGIB(freq_data=f,
                     steer=st,
                     method='LassoLars',
                     n=10,
                     cached=False)


class acoular_test(unittest.TestCase):
Exemple #5
0
st = SteeringVector(grid=g, mics=m, env=env)

#===============================================================================
# for frequency domain methods, this provides the cross spectral matrix and its
# eigenvalues and eigenvectors, if only the matrix is needed then class 
# PowerSpectra can be used instead
#===============================================================================
f = PowerSpectra(time_data=t1, 
               window='Hanning', overlap='50%', block_size=256, #FFT-parameters
               ind_low=15, ind_high=31) #to save computational effort, only
               # frequencies with index 15-31 are used

#===============================================================================
# beamformers in frequency domain
#===============================================================================
b = BeamformerCMF(freq_data=f, steer=st, alpha=1e-8)

#===============================================================================
# plot result maps for different beamformers in frequency domain
#===============================================================================
figure(1,(7,7)) #no of figure
i1 = 1 #no of subplot
from time import time
for method in ('LassoLars', 'LassoLarsBIC', 'OMPCV', 'NNLS'):
    b.method = method
    subplot(2,2,i1)
    i1 += 1
    ti = time()
    map = b.synthetic(cfreq,1)
    print(time()-ti)
    mx = L_p(map.max())
bort1Full = BeamformerOrth(beamformer=be1Full, eva_list=list(range(4, 8)))
bort2Full = BeamformerOrth(beamformer=be2Full, eva_list=list(range(4, 8)))
bort3Full = BeamformerOrth(beamformer=be3Full, eva_list=list(range(4, 8)))
bort4Full = BeamformerOrth(beamformer=be4Full, eva_list=list(range(4, 8)))
Lbort1Rem = L_p(bort1Rem.synthetic(4000, 1))
Lbort2Rem = L_p(bort2Rem.synthetic(4000, 1))
Lbort3Rem = L_p(bort3Rem.synthetic(4000, 1))
Lbort4Rem = L_p(bort4Rem.synthetic(4000, 1))
Lbort1Full = L_p(bort1Full.synthetic(4000, 1))
Lbort2Full = L_p(bort2Full.synthetic(4000, 1))
Lbort3Full = L_p(bort3Full.synthetic(4000, 1))
Lbort4Full = L_p(bort4Full.synthetic(4000, 1))

bcmf1Rem = BeamformerCMF(freq_data=f,
                         grid=g,
                         mpos=m,
                         r_diag=True,
                         c=346.04,
                         steer='classic')
bcmf2Rem = BeamformerCMF(freq_data=f,
                         grid=g,
                         mpos=m,
                         r_diag=True,
                         c=346.04,
                         steer='inverse')
bcmf3Rem = BeamformerCMF(freq_data=f,
                         grid=g,
                         mpos=m,
                         r_diag=True,
                         c=346.04,
                         steer='true level')
bcmf4Rem = BeamformerCMF(freq_data=f,
bort3Rem = BeamformerOrth(beamformer=be3Rem, eva_list=list(range(4,8)))
bort4Rem = BeamformerOrth(beamformer=be4Rem, eva_list=list(range(4,8)))
bort1Full = BeamformerOrth(beamformer=be1Full, eva_list=list(range(4,8)))
bort2Full = BeamformerOrth(beamformer=be2Full, eva_list=list(range(4,8)))
bort3Full = BeamformerOrth(beamformer=be3Full, eva_list=list(range(4,8)))
bort4Full = BeamformerOrth(beamformer=be4Full, eva_list=list(range(4,8)))
Lbort1Rem = L_p(bort1Rem.synthetic(4000,1))
Lbort2Rem = L_p(bort2Rem.synthetic(4000,1))
Lbort3Rem = L_p(bort3Rem.synthetic(4000,1))
Lbort4Rem = L_p(bort4Rem.synthetic(4000,1))
Lbort1Full = L_p(bort1Full.synthetic(4000,1))
Lbort2Full = L_p(bort2Full.synthetic(4000,1))
Lbort3Full = L_p(bort3Full.synthetic(4000,1))
Lbort4Full = L_p(bort4Full.synthetic(4000,1))

bcmf1Rem = BeamformerCMF(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, steer='classic')
bcmf2Rem = BeamformerCMF(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, steer='inverse')
bcmf3Rem = BeamformerCMF(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, steer='true level')
bcmf4Rem = BeamformerCMF(freq_data=f, grid=g, mpos=m, r_diag=True, c=346.04, steer='true location')
bcmf1Full = BeamformerCMF(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, steer='classic')
bcmf2Full = BeamformerCMF(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, steer='inverse')
bcmf3Full = BeamformerCMF(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, steer='true level')
bcmf4Full = BeamformerCMF(freq_data=f, grid=g, mpos=m, r_diag=False, c=346.04, steer='true location')
Lbcmf1Rem = L_p(bcmf1Rem.synthetic(4000,1))
Lbcmf2Rem = L_p(bcmf2Rem.synthetic(4000,1))
Lbcmf3Rem = L_p(bcmf3Rem.synthetic(4000,1))
Lbcmf4Rem = L_p(bcmf4Rem.synthetic(4000,1))
Lbcmf1Full = L_p(bcmf1Full.synthetic(4000,1))
Lbcmf2Full = L_p(bcmf2Full.synthetic(4000,1))
Lbcmf3Full = L_p(bcmf3Full.synthetic(4000,1))
Lbcmf4Full = L_p(bcmf4Full.synthetic(4000,1))
Exemple #8
0
             increment=0.025)

#===============================================================================
# for frequency domain methods, this provides the cross spectral matrix and its
# eigenvalues and eigenvectors, if only the matrix is needed then class 
# PowerSpectra can be used instead
#===============================================================================
f = EigSpectra(time_data=t1, 
               window='Hanning', overlap='50%', block_size=256, #FFT-parameters
               ind_low=15, ind_high=31) #to save computational effort, only
               # frequencies with index 15-31 are used

#===============================================================================
# beamformers in frequency domain
#===============================================================================
b = BeamformerCMF(freq_data=f, grid=g, mpos=m, c=346.04, alpha=1e-8)

#===============================================================================
# plot result maps for different beamformers in frequency domain
#===============================================================================
figure(1) #no of figure
i1 = 1 #no of subplot
from time import time
for method in ('LassoLars', 'LassoLarsBIC', \
        'OMPCV', 'NNLS'):
    b.method = method
    subplot(2,2,i1)
    i1 += 1
    ti = time()
    map = b.synthetic(cfreq,1)
    print time()-ti
Exemple #9
0
    ind_low=8,
    ind_high=16)  #to save computational effort, only
# frequencies with indices 8..15 are used

#===============================================================================
# different beamformers in frequency domain
#===============================================================================
bb = BeamformerBase(freq_data=f, steer=st, r_diag=True)
bc = BeamformerCapon(freq_data=f, steer=st, cached=False)
be = BeamformerEig(freq_data=f, steer=st, r_diag=True, n=54)
bm = BeamformerMusic(freq_data=f, steer=st, n=6)
bd = BeamformerDamas(beamformer=bb, n_iter=100)
bdp = BeamformerDamasPlus(beamformer=bb, n_iter=100)
bo = BeamformerOrth(beamformer=be, eva_list=list(range(38, 54)))
bs = BeamformerCleansc(freq_data=f, steer=st, r_diag=True)
bcmf = BeamformerCMF(freq_data=f, steer=st, method='LassoLarsBIC')
bl = BeamformerClean(beamformer=bb, n_iter=100)
bf = BeamformerFunctional(freq_data=f, steer=st, r_diag=False, gamma=4)
bgib = BeamformerGIB(freq_data=f, steer=st, method='LassoLars', n=10)

#===============================================================================
# plot result maps for different beamformers in frequency domain
#===============================================================================
figure(1, (10, 6))
i1 = 1  #no of subplot
for b in (bb, bc, be, bm, bl, bo, bs, bd, bcmf, bf, bdp, bgib):
    subplot(4, 4, i1)
    i1 += 1
    map = b.synthetic(cfreq, 1)
    mx = L_p(map.max())
    imshow(L_p(map.T),