Exemple #1
0
 def test_initialization(self):
     a = TensorNetwork()
     a.add_node(1, [0], numpy.array([1, 2]))
     a.add_node(2, [0], numpy.array([2, 3]))
     a.open_edge(0)
     a.open_edge(1)
     a.open_edge(0)
     self.assertEqual(a.shape, (2, None, 2))
     a.add_node(3, [0, 1], numpy.array([[1, 2], [3, 4]]))
     self.assertEqual(a.shape, (2, 2, 2))
    def setUp(self):
        self.a = TensorNetwork()
        for i in range(5):
            self.a.open_edge(i)
        for i in range(5):
            for j in range(5, 10):
                self.a.add_node((i, j), [i, j], numpy.random.rand(2, 2))

        self.b = TensorNetwork()
        for i in range(5):
            self.b.open_edge(i)
        for i in range(5):
            for j in range(5, 10):
                self.b.add_node((i, j), [i, j], 1j * numpy.random.rand(2, 3))

        self.c = Tensor(numpy.random.rand(2, 2, 2, 2, 2))
Exemple #3
0
    def test_copy(self):
        a = TensorNetwork()
        a.add_node(0, [0, 1], numpy.random.rand(10, 8))
        a.add_node(1, [1, 2], numpy.random.rand(8, 9))
        a.add_node(2, [2, 0], numpy.random.rand(9, 10))
        b = a.copy()
        c = deepcopy(a)
        self.assertNotEqual(b.identifier, a.identifier)
        self.assertNotEqual(c.identifier, a.identifier)

        node = list(b.nodes_by_name)[0]
        self.assertTrue(a.nodes[(0, node)]['tensor']._data is b.nodes[(0, node)]['tensor']._data)
        self.assertFalse(a.nodes[(0, node)]['tensor']._data is c.nodes[(0, node)]['tensor']._data)

        b.update_node(0, numpy.random.rand(10, 8))
        self.assertNotEqual(a.contract(), b.contract())
Exemple #4
0
 def test_transpose(self):
     a = TensorNetwork()
     b = numpy.random.rand(3, 4, 5)
     a.add_node(0, [0, 1, 2], b)
     a.open_edge(0)
     a.open_edge(1)
     a.open_edge(2)
     perm = (2, 0, 1)
     self.assertTrue(numpy.allclose((a % perm).contract(),
                                    numpy.transpose(b, perm)))
Exemple #5
0
 def setUp(self):
     numpy.random.seed(517100123)
     self.a = TensorNetwork()
     self.open_edges = []
     self.closed_edges = []
     for i in range(10):
         self.a.add_edge(i, bond_dim=2)
         if numpy.random.randint(2):
             self.a.open_edge(i)
             self.open_edges.append(i)
         else:
             self.closed_edges.append(i)
     self.bipart = numpy.random.randint(2, size=(10, 10))
     for i in range(10):
         edges = numpy.where(self.bipart[i])[0]
         self.a.add_node(i,
                         edges,
                         numpy.random.rand(*([2] * len(edges))))
Exemple #6
0
 def test_shape(self):
     a = TensorNetwork()
     a.add_node(0, [0, 1], numpy.zeros((2, 3)))
     self.assertEqual((), a.shape)
     sp = []
     for _ in range(1000):
         o = numpy.random.randint(2)
         a.open_edge(o)
         sp.append(o + 2)
     self.assertEqual(tuple(sp), a.shape)
Exemple #7
0
    def test_update_nodes(self):
        peps = TensorNetwork()
        for i in range(3):
            for j in range(3):
                peps.add_node((i, j), [(i, j, 'h'), ((i + 1) % 3, j, 'h'), (i, j, 'v'), (i, (j + 1) % 3, 'v'), (i, j, 'o')])
                peps.open_edge((i, j, 'o'))

        self.assertEqual(peps.shape, tuple([None] * 9))

        diagonal = numpy.zeros((2, 2, 2, 2, 2))
        diagonal[0, 0, 0, 0, 0] = 1
        diagonal[1, 1, 1, 1, 1] = 1

        ready_nodes = []

        for node in peps.nodes_by_name:
            self.assertTrue(peps.is_valid)
            self.assertFalse(peps.is_ready)
            ready_nodes.append(node)
            peps.update_node(node, diagonal)

        self.assertTrue(peps.is_ready)
        self.assertTrue(peps.shape == tuple([2] * 9))
Exemple #8
0
    'T_1_inv': 1 / 30000.0,
    'T_phi_inv': 1 / 60000.0,
    'p_axis': 1e-4,
    'p_plane': 5e-4,
    'delta_phi': 0.01,
    'T_g_1Q': 20.0,
    'T_g_2Q': 40.0,
    'tau_m': 300.0,
    'tau_d': 300.0,
    'gamma': 0,
    'alpha0': 4,
    'kappa': 1 / 250,
    'chi': 1.3 * 1e-3
}

Z = TensorNetwork([0, 0])
Z.add_node('PH', [0], np.ones(2))
PlaceHolder = Measurement(1, Z, name='PH_nz')
TraceState = State(1, TensorNetwork([0, 0], bond_dim=2))

qubit_group_name = {
    (0, 0): 'D1',
    (0, 2): 'D2',
    (2, 0): 'D3',
    (2, 2): 'D4',
    (1, 1): 'X1',
    (1, 3): 'Z1',
    (3, 1): 'Z2',
    (3, 3): 'X2',
    (-1, -1): 'dummy'
}
Exemple #9
0
 def test_fix_index(self):
     a = TensorNetwork()
     a.add_edge(1, bond_dim=2)
     a.add_edge(2, bond_dim=2)
     a.add_edge(3, bond_dim=2)
     for i in range(10):
         a.open_edge(1)
         a.open_edge(2)
         a.open_edge(3)
     for i in range(5):
         a.fix_index(0)
         a.fix_index(10 - i)
         a.fix_index(20 - 2 * i)
     self.assertEqual(a.shape, tuple([2] * 15))
     c = numpy.zeros((2, 2, 2, 2, 2))
     c[0, 0, 0, 0, 0] = 1
     data = numpy.einsum('ABCDE, FGHIJ, KLMNO -> KAFLBCGMDHINEJO', c, c, c)
     self.assertTrue(numpy.allclose(a.contract(), data))
Exemple #10
0
import numpy as np
import time
import math
from acqdp import circuit
from acqdp.tensor_network import ContractionScheme, TensorNetwork
from datetime import timedelta
import json
import argparse
import os

t = TensorNetwork(open_edges=[0, 1, 1, 0])
t.add_node(0, [0, 1], np.array([[1, 1j], [1j, np.exp(np.pi * 1j / 6)]]))
ISWAP_CZ = circuit.Unitary(2, t, "FSim", True)


def GRCS(f, in_state=0, simplify=False):
    with open(f) as fin:
        n = int(fin.readline())
        c = circuit.Circuit()
        if in_state is not None:
            for qubit in range(n):
                c.append(circuit.CompState[(in_state >> (n - qubit - 1)) & 1],
                         [qubit], -1)
        gate_table = {
            'h':
            circuit.HGate,
            'x_1_2':
            circuit.Unitary(1,
                            np.array([[1 / np.sqrt(2), -1j / np.sqrt(2)],
                                      [-1j / np.sqrt(2), 1 / np.sqrt(2)]]),
                            name='X_1_2'),
Exemple #11
0
 def test_basic_contraction(self):
     a = TensorNetwork()
     a.add_node(0, [0, 1], numpy.ones((2, 2)))
     self.assertTrue(numpy.isclose(a.contract(), 4 + 0j))
     a.add_node(1, [0, 1], numpy.ones((2, 2)))
     self.assertTrue(numpy.isclose(a.contract(), 4 + 0j))
     a.update_node(1, numpy.array([[70168, 52 * 1j], [65.77, -1e-3]]))
     self.assertTrue(numpy.isclose(a.contract(), 70233.769 + 52 * 1j))
class TensorSumTestCase(unittest.TestCase):

    def setUp(self):
        self.a = TensorNetwork()
        for i in range(5):
            self.a.open_edge(i)
        for i in range(5):
            for j in range(5, 10):
                self.a.add_node((i, j), [i, j], numpy.random.rand(2, 2))

        self.b = TensorNetwork()
        for i in range(5):
            self.b.open_edge(i)
        for i in range(5):
            for j in range(5, 10):
                self.b.add_node((i, j), [i, j], 1j * numpy.random.rand(2, 3))

        self.c = Tensor(numpy.random.rand(2, 2, 2, 2, 2))

    def test_addition(self):
        c = self.a + ~(self.b) + 8 * self.c
        self.assertEqual(type(c), TensorSum)
        self.assertTrue(numpy.allclose(c.contract(),
                                       self.a.contract()
                                       + numpy.conj(self.b.contract())
                                       + 8 * self.c.contract()))

    def test_associativity(self):
        c = (self.a + self.b) + self.c
        d = self.a + (self.b + self.c)
        e = (self.a + (self.c - self.b)) + (self.a + (2 * self.b - self.a))
        self.assertTrue(numpy.allclose(c.contract(), d.contract()))
        self.assertTrue(numpy.allclose(c.contract(), e.contract()))

    def test_transpose(self):
        axesA = (2, 4, 0, 1, 3)
        axesB = (3, 4, 1, 0, 2)
        axesC = (3, 0, 1, 2, 4)
        axes_ = (1, 3, 0, 4, 2)
        c = (self.a % axesA
             + self.b % axesB
             + self.c % axesC) % axes_
        data = numpy.transpose(numpy.transpose(self.a.contract(), axesA)
                               + numpy.transpose(self.b.contract(), axesB)
                               + numpy.transpose(self.c.contract(), axesC), axes_)
        self.assertTrue(numpy.allclose(c.contract(), data))

    def test_add_and_remove_term(self):
        c = TensorSum()
        for i in range(100):
            c.add_term(i, self.a % numpy.random.permutation(5))
        choice = numpy.random.choice(100, 30, replace=False)
        for j in choice:
            c.remove_term(j)
        with self.assertRaises(KeyError):
            c.remove_term(choice[0])
        with self.assertRaises(KeyError):
            c.add_term(0, None)
            c.add_term(0, None)

    def test_shape_cache(self):
        c = TensorSum()
        misshaped = numpy.random.rand(2, 2, 3, 2, 2)
        c.add_term(0, self.a)
        c.add_term(1, self.a)
        c.remove_term(0)
        with self.assertRaises(ValueError):
            c.add_term(2, misshaped)
        c.add_term(2, self.a)
        c.remove_term(1)
        c.remove_term(2)
        # Now that C is empty we can add any shape to it
        c.add_term(0, misshaped)
        c.add_term(1, misshaped)
        with self.assertRaises(ValueError):
            c.add_term(2, self.a)
        # The function update_term does not fail early, so the user can update all tensors one-by-one
        c.update_term(0, self.a)
        c.update_term(1, self.a)
        c.add_term(2, self.a)

    def test_copy(self):
        c = TensorSum()
        a = Tensor(numpy.random.rand(2, 2, 2, 2, 2))
        for i in range(2):
            c.add_term(i, (a % numpy.random.permutation(5)).expand())
        d = c.copy()
        testing.assert_allclose(c.contract(), d.contract())
        e = deepcopy(c)
        testing.assert_allclose(c.contract(), e.contract())
        d.update_term(0, numpy.random.rand(2, 2, 2, 2, 2))
        self.assertFalse(numpy.allclose(c.contract(), d.contract()))
Exemple #13
0
 def test_fix_nested_edge_from_inside(self):
     a = TensorNetwork()
     a.add_edge(0, bond_dim=2)
     a.open_edge(0)
     a.open_edge(0)
     b = TensorNetwork()
     b.add_node(0, [0, 1], a)
     b.open_edge(0)
     b.open_edge(1)
     c = TensorNetwork()
     c.add_node(0, [0, 1], b)
     c.open_edge(0)
     c.open_edge(1)
     a.fix_edge(0)
     self.assertTrue(numpy.allclose(c.contract(), numpy.array([[1, 0], [0, 0]])))
Exemple #14
0
class TensorNetworkGraphTestCase(unittest.TestCase):
    def setUp(self):
        numpy.random.seed(517100123)
        self.a = TensorNetwork()
        self.open_edges = []
        self.closed_edges = []
        for i in range(10):
            self.a.add_edge(i, bond_dim=2)
            if numpy.random.randint(2):
                self.a.open_edge(i)
                self.open_edges.append(i)
            else:
                self.closed_edges.append(i)
        self.bipart = numpy.random.randint(2, size=(10, 10))
        for i in range(10):
            edges = numpy.where(self.bipart[i])[0]
            self.a.add_node(i,
                            edges,
                            numpy.random.rand(*([2] * len(edges))))

    def test_graph_properties(self):
        self.assertTrue(set(self.a.open_edges) == set(self.open_edges))
        self.assertTrue(self.a.closed_edges_by_name == set(self.closed_edges))

        nodes_loc = list(numpy.where(numpy.random.randint(2, size=10))[0])
        edges_from_nodes = set()
        for node in nodes_loc:
            edges_from_nodes |= set(numpy.where(self.bipart[node])[0])
        self.assertTrue(self.a.edges_by_name_from_nodes_by_name(nodes_loc) == edges_from_nodes)

        closed_edges_from_nodes = set()
        for edge in edges_from_nodes:
            if set(numpy.where(self.bipart[:, edge])[0]).issubset(nodes_loc):
                if edge not in self.open_edges:
                    closed_edges_from_nodes.add(edge)
        self.assertTrue(self.a.closed_edges_by_name_from_nodes_by_name(nodes_loc) == closed_edges_from_nodes)

        edges_loc = list(numpy.where(numpy.random.randint(2, size=10))[0])
        nodes_from_edges = set()
        for edge in edges_loc:
            nodes_from_edges |= set(numpy.where(self.bipart[:, edge])[0])
        self.assertTrue(self.a.nodes_by_name_from_edges_by_name(edges_loc) == nodes_from_edges)

    def test_graph_manipulation(self):
        data = self.a.contract()
        closed_edges = list(self.a.closed_edges_by_name)
        self.a.merge_edges(closed_edges, "merge")
        for edge in closed_edges:
            self.assertTrue((edge not in self.a.edges_by_name) or (len(self.a.network.nodes[(1, edge)]) == 0))
        for node in range(10):
            edge_list = numpy.where(self.bipart[node])[0]
            for i in range(len(edge_list)):
                if self.a.network.nodes[(0, node)]['edges'][i] == 'merge':
                    self.a.rewire(node, i, edge_list[i])

        self.assertTrue(numpy.allclose(self.a.contract(), data))
        node = numpy.random.randint(10)
        pop = self.a.pop_node(node)
        self.a.add_node(node, pop['edges'], pop['tensor'])
        self.assertTrue(numpy.allclose(self.a.contract(), data))

    def test_khp(self):
        data = self.a.contract()
        data_khp = self.a.contract('khp')
        self.assertTrue(numpy.allclose(data, data_khp))
Exemple #15
0
 def test_single_tensor(self):
     a = TensorNetwork()
     a.add_node('X', [0], numpy.array([1, 0]), is_open=True)
     self.assertTrue(numpy.allclose(a.contract('khp'), [1, 0]))
Exemple #16
0
    """

    for q1 in high_freq_group:
        if angles is not None:
            if isinstance(angles, dict):
                gate = Diagonal(2, np.array([1, 1, np.exp(1j * angles[q1]), -np.exp(-1j * angles[q1])]), name='NoisyCZ')
            else:
                gate = Diagonal(2, np.array([1, 1, 1, np.exp(1j * angles)]), name='NoisyCZ')
        else:
            gate = CZGate
        for q2 in low_freq_group:
            if abs(q1[0] - q2[0]) == 1 and abs(q1[1] - q2[1]) == 1:
                circuit.append(gate, [q1, q2], time_step=time_step)


C = TensorNetwork([0, 0, 0, 0], bond_dim=2)
C.add_node('PH', [0], np.ones(2))
NDCompMeas = Channel(1, C, name='ND')


def add_noisy_surface_code(circuit, qubit_coords=None, connections=None, time=None, params=default_params):

    if time is None:
        time = max(circuit.max_time, 0)
    qubit_group_name = {
        (0, 0): 'D1',
        (0, 2): 'D2',
        (2, 0): 'D3',
        (2, 2): 'D4',
        (1, 1): 'X1',
        (1, 3): 'Z1',
Exemple #17
0
    def test_mps(self):
        c = TensorNetwork()
        for i in range(10):
            c.add_node(i, [i, (i, 'o'), (i + 1) % 10], numpy.ones((2, 3, 2)))
            c.open_edge((i, 'o'))
        self.assertEqual(c.shape, tuple([3] * 10))

        d = TensorNetwork()
        d.add_node('C', tensor=c)
        d.add_node('~C', tensor=~c)
        norm_sq = c.norm_squared
        self.assertAlmostEqual(norm_sq, d.contract())
        d.expand(['C'])
        # d.raw_data = None
        self.assertAlmostEqual(norm_sq, d.contract())
        d.expand(['~C'])
        # d.raw_data = None
        self.assertAlmostEqual(norm_sq, d.contract())
        d.encapsulate([('C', i) for i in range(10)])
        # d.raw_data = None
        self.assertAlmostEqual(norm_sq, d.contract())
        d.encapsulate([('~C', i) for i in range(10)])
        # d.raw_data = None
        self.assertAlmostEqual(norm_sq, d.contract())
Exemple #18
0
 def lightcone(self, qubits, csp, num_layers):
     """Construct simplified tensor network corresponding to all QAOA circuit element acting non-trivially on a set
     of qubits."""
     qubits_set = set(qubits)
     turns = {}
     tn = TensorNetwork(dtype=complex)
     for i in range(num_layers):
         for qubit in qubits_set:
             tn.add_node((2 * i + 1, qubit), [(i, qubit), (i + 1, qubit)], None)
             tn.add_node((-2 * i - 1, qubit), [(-i, qubit), (-i - 1, qubit)], None)
         clauses = []
         new_set = set()
         for clause in csp:
             if set(clause).intersection(qubits_set):
                 clauses.append(clause)
                 new_set |= set(clause)
                 tn.add_node((2 * i + 2, clause), [(i + 1, q) for q in clause], None)
                 tn.add_node((-2 * i - 2, clause), [(-i - 1, q) for q in clause], None)
         turns.update({qubit: i + 1 for qubit in new_set.difference(qubits_set)})
         qubits_set |= new_set
     for qubit in turns:
         tn.merge_edges([(turns[qubit], qubit), (-turns[qubit], qubit)], merge_to=(0, qubit))
     tn.update_dimension({e: 2 for e in tn.edges_by_name})
     return tn, qubits_set
Exemple #19
0
 def test_matmul(self):
     a = TensorNetwork()
     res = numpy.eye(2)
     a.open_edge(0)
     for i in range(100):
         random_mat = numpy.random.rand(2, 2)
         a.add_node(i, [i, i + 1], random_mat)
         if i > 0:
             a.close_edge(i)
         a.open_edge(i + 1)
         res = res.dot(random_mat)
     self.assertTrue(numpy.allclose(res, a.contract()))