Exemple #1
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 activate=1,
                 init=1.0):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes,
                               planes,
                               kernel_size=3,
                               stride=stride,
                               dilation=dilation,
                               padding=dilation,
                               bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * 4)

        # self.relu = nn.ReLU(inplace=True)

        self.downsample = downsample
        self.stride = stride

        self.relu1 = act.Activate(activate, init=init)
        self.relu2 = act.Activate(activate, init=init)
        self.relu3 = act.Activate(activate, init=init)
Exemple #2
0
    def __init__(self,
                 inplanes,
                 outplanes,
                 stride=1,
                 t=6,
                 act_id=1,
                 init_value=1.0):
        super(LinearBottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes,
                               inplanes * t,
                               kernel_size=1,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(inplanes * t)
        self.conv2 = nn.Conv2d(inplanes * t,
                               inplanes * t,
                               kernel_size=3,
                               stride=stride,
                               padding=1,
                               bias=False,
                               groups=inplanes * t)
        self.bn2 = nn.BatchNorm2d(inplanes * t)
        self.conv3 = nn.Conv2d(inplanes * t,
                               outplanes,
                               kernel_size=1,
                               bias=False)
        self.bn3 = nn.BatchNorm2d(outplanes)

        # self.activation = activation(inplace=True)
        self.act_1 = act.Activate(act_id=act_id, init=init_value)
        self.act_2 = act.Activate(act_id=act_id, init=init_value)

        self.stride = stride
        self.t = t
        self.inplanes = inplanes
        self.outplanes = outplanes
Exemple #3
0
    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 activate=1,
                 init=1.0):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride, dilation)
        self.bn1 = nn.BatchNorm2d(planes)

        # self.relu = nn.ReLU(inplace=True)

        self.conv2 = conv3x3(planes, planes, dilation=dilation)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

        self.relu1 = act.Activate(activate, init=init)
        self.relu2 = act.Activate(activate, init=init)
Exemple #4
0
    def __init__(self,
                 block,
                 layers,
                 num_classes=1000,
                 pre_trained_model=None,
                 activate=1,
                 init=1.0):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=1,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)

        # self.relu = nn.ReLU(inplace=True)
        # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, layers[0], stride=1)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=1)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        self.relu1 = act.Activate(activate, init=init)

        if pre_trained_model is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                    m.weight.data.normal_(0, math.sqrt(2. / n))
                elif isinstance(m, nn.BatchNorm2d):
                    m.weight.data.fill_(1)
                    m.bias.data.zero_()
        else:
            print("load init model... ")
            model_dict = self.state_dict()

            model_dict.update(pre_trained_model.state_dict())
            self.load_state_dict(model_dict)
Exemple #5
0
    def __init__(self,
                 scale=1.0,
                 input_size=224,
                 t=6,
                 in_channels=3,
                 num_classes=1000,
                 act_id=1,
                 init_value=1.0):
        """
        MobileNet2 constructor.
        :param in_channels: (int, optional): number of channels in the input tensor.
                Default is 3 for RGB image inputs.
        :param input_size:
        :param num_classes: number of classes to predict. Default
                is 1000 for ImageNet.
        :param scale:
        :param t:
        :param activation:
        :param init_value:
        """

        super(MobileNet2, self).__init__()

        self.scale = scale
        self.t = t

        # self.activation_type = activation
        # self.activation = activation(inplace=True)
        self.act_id = act_id
        self.init = init_value
        self.act_1 = act.Activate(act_id=self.act_id, init=self.init)
        self.act_2 = act.Activate(act_id=self.act_id, init=self.init)

        self.num_classes = num_classes

        self.num_of_channels = [32, 16, 24, 32, 64, 96, 160, 320]
        # assert (input_size % 32 == 0)

        self.c = [
            _make_divisible(ch * self.scale, 8) for ch in self.num_of_channels
        ]
        self.n = [1, 1, 2, 3, 4, 3, 3, 1]
        self.s = [2, 1, 2, 2, 2, 1, 2, 1]
        self.conv1 = nn.Conv2d(in_channels,
                               self.c[0],
                               kernel_size=3,
                               bias=False,
                               stride=self.s[0],
                               padding=1)
        self.bn1 = nn.BatchNorm2d(self.c[0])
        self.bottlenecks = self._make_bottlenecks()

        # Last convolution has 1280 output channels for scale <= 1
        self.last_conv_out_ch = 1280 if self.scale <= 1 else _make_divisible(
            1280 * self.scale, 8)
        self.conv_last = nn.Conv2d(self.c[-1],
                                   self.last_conv_out_ch,
                                   kernel_size=1,
                                   bias=False)
        self.bn_last = nn.BatchNorm2d(self.last_conv_out_ch)
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        self.dropout = nn.Dropout(p=0.2,
                                  inplace=True)  # confirmed by paper authors
        self.fc = nn.Linear(self.last_conv_out_ch, self.num_classes)
        self.init_params()