xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                           np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot class samples
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0],
                    y=X[y == cl, 1],
                    alpha=0.8,
                    c=cmap(idx),
                    marker=markers[idx],
                    label=cl)


ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')
plt.show()
import numpy as np
from adalineSGD import AdalineSGD
from mainPerceptron import plot_decision_regions

# Print the tail of the data
df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)

# Visualisation the Data
y = df.iloc[0:100, 4].values
print(y)
y = np.where(y == 'Iris-setosa', -1, 1)
print(y)
X = df.iloc[0:100, [0, 2]].values


X_std = np.copy(X)
X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()

ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada.fit(X_std, y)
plot_decision_regions(X_std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient descent')
plt.xlabel('sepal length [standardized')
plt.ylabel('petal length [standardized')
plt.legend(loc='upper left')
plt.show()
plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')
plt.show()
perceptron algorithm and look at the number of errors make during each 
epoch.

"""
from adalineGD import AdalineGD
from adalineSGD import AdalineSGD

# Standardize data
X_std = np.copy(X)
X_std[:, 0] = (X[:, 0] - X[:, 0].mean()) / X[:, 0].std()
X_std[:, 1] = (X[:, 1] - X[:, 1].mean()) / X[:, 1].std()

adln = AdalineGD(eta=0.01, n_iter=25)
adln.fit(X_std, y)
adln1 = AdalineSGD(eta=0.01, n_iter=25)
adln1.fit(X_std, y)

plt.plot(range(1,
               len(adln1.errors_) + 1),
         adln1.errors_,
         marker='x',
         color='red',
         label='AdalineSGD')
plt.plot(range(1,
               len(adln.errors_) + 1),
         adln.errors_,
         marker='o',
         color='blue',
         label='AdalineGD')
plt.xlabel('Epoch #')
plt.ylabel('Errors')
from init_obj import create_universe, prepare_data, show_universe, test_model
from adaline import Adaline
from adalineSGD import AdalineSGD
import numpy as np

groups = create_universe()
X, Y = prepare_data(groups)

# show_universe(groups)

y = np.where(Y == 'A', 1, -1)

model = Adaline(0.0001, 50)
model.fit(X, y)

# stochastic

model2 = AdalineSGD(0.0001, 50)

model2.fit(X, y)

test_model(X, model, model2)
                    marker=markers[idx],
                    label=cl)


# read the data
df = pd.read_csv(
    'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data',
    header=None)
y = df.iloc[0:100, 4].values
y = np.where(y == 'Iris-setosa', -1, 1)
x = df.iloc[0:100, [0, 2]].values

# standardizing instead
x_std = np.copy(x)
x_std[:, 0] = (x[:, 0] - x[:, 0].mean()) / x[:, 0].std()
x_std[:, 1] = (x[:, 1] - x[:, 1].mean()) / x[:, 1].std()

ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
ada.fit(x_std, y)
plot_decision_regions(x_std, y, classifier=ada)
plt.title('Adaline - Stochastic Gradient Descent')
plt.xlabel('sepal length [standardized]')
plt.ylabel('petal length [standardized]')
plt.legend(loc='upper left')
plt.show()

plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Average Cost')
plt.show()
Exemple #6
0
plt.legend(loc='upper left DG')
plt.tight_layout()
# plt.savefig('./adaline_2.png', dpi=300)
plt.show()

plt.plot(range(1,len(ada.cost_)+1),ada.cost_, marker='o')
plt.xlabel('Epochs DG')
plt.ylabel('sum-squared-error DG')
plt.tight_layout()
plt.show()
print("=======================ADALINE=========================")

print("=======================SDG=========================")

adaSDG = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
adaSDG.fit(X_std, y)

fc.plot_dexision_regions(X_std, y, classifier=adaSDG)
plt.title('AdalineSDG - Stochastic Gradient Descent')
plt.xlabel('sepal length [standardized]SDG')
plt.ylabel('petal length [standardized]SDG')
plt.legend(loc='upper left SDG')
plt.tight_layout()
#plt.savefig('./adaline_4.png', dpi=300)
plt.show()

plt.plot(range(1, len(adaSDG.cost_) + 1), adaSDG.cost_, marker='o')
plt.xlabel('Epochs SDG')
plt.ylabel('Average Cost SDG')

plt.tight_layout()