Exemple #1
0
    def test_adc2_shift_invert_triplets(self):
        refdata = cache.reference_data["h2o_sto3g"]
        matrix = adcc.AdcMatrix("adc2", LazyMp(cache.refstate["h2o_sto3g"]))
        conv_tol = 1e-5
        shift = -0.5

        # Construct shift and inverted matrix:
        shinv = IterativeInverse(AdcMatrixShifted(matrix, shift),
                                 conv_tol=conv_tol / 10,
                                 Pinv=JacobiPreconditioner,
                                 callback=cg_print)

        # Solve for triplets
        guesses = adcc.guesses_triplet(matrix, n_guesses=5, block="ph")
        symm = IndexSpinSymmetrisation(matrix, enforce_spin_kind="triplet")
        res = lanczos(shinv,
                      guesses,
                      n_ep=5,
                      callback=la_print,
                      explicit_symmetrisation=symm)
        assert res.converged

        # Undo spectral transformation and compare
        eigenvalues = sorted(1 / res.eigenvalues - shift)
        ref_triplets = refdata["adc2"]["triplet"]["eigenvalues"][:5]
        assert eigenvalues == approx(ref_triplets)
Exemple #2
0
    def test_adc2_triplets(self):
        refdata = cache.reference_data["h2o_sto3g"]
        matrix = adcc.AdcMatrix("adc2", LazyMp(cache.refstate["h2o_sto3g"]))

        # Solve for triplets
        guesses = adcc.guesses_triplet(matrix, n_guesses=10, block="s")
        res = jacobi_davidson(matrix, guesses, n_ep=10)

        ref_triplets = refdata["adc2"]["triplet"]["eigenvalues"]
        assert res.converged
        assert res.eigenvalues == approx(ref_triplets)
Exemple #3
0
    def test_adc2_triplets(self):
        refdata = cache.reference_data["h2o_sto3g"]
        matrix = adcc.AdcMatrix("adc2", LazyMp(cache.refstate["h2o_sto3g"]))

        # Solve for triplets
        guesses = adcc.guesses_triplet(matrix, n_guesses=6, block="ph")
        res = lanczos(matrix, guesses, n_ep=6, which="SM")

        ref_triplets = refdata["adc2"]["triplet"]["eigenvalues"][:6]
        assert res.converged
        assert res.eigenvalues == approx(ref_triplets)
Exemple #4
0
def make_mock_adc_state(refstate, matmethod, kind, reference):
    ground_state = LazyMp(refstate, CacheAllPolicy())
    matrix = AdcMatrix(matmethod, ground_state)

    # Number of full state results
    n_full = len(reference[kind]["eigenvectors_singles"])

    state = AdcMockState(matrix)
    state.method = matrix.method
    state.ground_state = ground_state
    state.reference_state = refstate
    state.kind = kind
    state.eigenvalues = reference[kind]["eigenvalues"][:n_full]

    spin_change = 0
    if refstate.restricted and kind == "singlet":
        symm = "symmetric"
    elif refstate.restricted and kind == "triplet":
        symm = "antisymmetric"
    elif kind in ["state", "spin_flip"]:
        symm = "none"
    else:
        raise ValueError("Unknown kind: {}".format(kind))

    state.eigenvectors = [
        guess_zero(matrix,
                   irrep="A",
                   spin_change=spin_change,
                   spin_block_symmetrisation=symm) for i in range(n_full)
    ]

    has_doubles = "eigenvectors_doubles" in reference[kind]
    vec_singles = reference[kind]["eigenvectors_singles"]
    vec_doubles = reference[kind].get("eigenvectors_doubles", None)
    for i, evec in enumerate(state.eigenvectors):
        evec["s"].set_from_ndarray(vec_singles[i])
        if has_doubles:
            evec["d"].set_from_ndarray(vec_doubles[i], 1e-14)
    return ExcitedStates(state)