Exemple #1
0
def run():
    torch.multiprocessing.freeze_support()

    use_cuda=True
    image_nc=1
    epochs = 60
    batch_size = 128
    BOX_MIN = 0
    BOX_MAX = 1

    # Define what device we are using
    print("CUDA Available: ",torch.cuda.is_available())
    device = torch.device("cuda" if (use_cuda and torch.cuda.is_available()) else "cpu")

    pretrained_model = "./MNIST_target_model.pth"
    targeted_model = MNIST_target_net().to(device)
    targeted_model.load_state_dict(torch.load(pretrained_model))
    targeted_model.eval()
    model_num_labels = 10

    # MNIST train dataset and dataloader declaration
    mnist_dataset = torchvision.datasets.MNIST('./dataset', train=True, transform=transforms.ToTensor(), download=True)
    dataloader = DataLoader(mnist_dataset, batch_size=batch_size, shuffle=True, num_workers=1)
    advGAN = AdvGAN_Attack(device,
                            targeted_model,
                            model_num_labels,
                            image_nc,
                            BOX_MIN,
                            BOX_MAX)

    advGAN.train(dataloader, epochs)   
Exemple #2
0
if not os.path.exists(models_path):
    os.makedirs(models_path)
targeted_model = targeted_model.cuda()
targeted_model = nn.DataParallel(targeted_model)
targeted_model.eval()
model_num_labels = 101
cfg = get_opts(data_name)
# MNIST train dataset and dataloader declaration
if data_name == 'cifar10':
    trainset = torchvision.datasets.CIFAR10(root=os.path.join(args.dir, 'data/cifar10', train=True, transform=cfg['transform_train'], download=True))
elif data_name == 'imagenette':
    trainset = ImageFolder(os.path.join(args.dir, 'imagenette2/train'), transform=cfg['transform_train'])
elif data_name == 'caltech101':
    trainset = ImageFolder(os.path.join(args.dir, 'Caltech101/train'), transform=cfg['transform_train'])

train_loader = DataLoader(
        trainset,
        batch_size=4,
        shuffle=True,
        num_workers=4,
        pin_memory=True
)
advGAN = AdvGAN_Attack(device,
                          targeted_model,
                          model_num_labels,
                          image_nc,
                          BOX_MIN,
                          BOX_MAX, models_path)

advGAN.train(train_loader, epochs)
Exemple #3
0
if not os.path.exists(models_path):
    os.makedirs(models_path)
if not os.path.exists(models_path + model_name):
    os.makedirs(models_path + model_name)

# Define what device we are using print("CUDA Available: ",torch.cuda.is_available())
device = torch.device("cuda" if (
    use_cuda and torch.cuda.is_available()) else "cpu")

pretrained_model = "./MNIST_target_model.pth"
targeted_model = MNIST_target_net().to(device)
targeted_model.load_state_dict(
    torch.load(pretrained_model, map_location=device))
targeted_model.eval()
model_num_labels = 10

# MNIST train dataset and dataloader declaration
mnist_dataset = torchvision.datasets.MNIST('./dataset',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)
dataloader = DataLoader(mnist_dataset,
                        batch_size=batch_size,
                        shuffle=True,
                        num_workers=1)
advGAN = AdvGAN_Attack(device, targeted_model, model_num_labels, image_nc,
                       BOX_MIN, BOX_MAX, eps, pgd_iter, models_path, out_path,
                       model_name, writer, args.E_lr, args.defG_lr)

advGAN.train(dataloader, args.epochs)
Exemple #4
0
    target_model.eval()

    model_num_labels = 10
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])
    transform = transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, 4),
        transforms.ToTensor(),
        normalize,
    ])
    # MNIST train dataset and dataloader declaration
    # mnist_dataset = torchvision.datasets.MNIST('./dataset', train=True, transform=transforms.ToTensor(), download=True)
    # transform = transforms.Compose([transforms.ToTensor()])
    # dataloader = DataLoader(
    #     datasets.MNIST('./dataset/MNIST',
    #                     train=True, download=True, transform=transform),
    #     batch_size=batch_size, shuffle=True)

    # cifar10
    dataloader = DataLoader(datasets.CIFAR10('../cifar-10-batches-py',
                                             train=True,
                                             download=True,
                                             transform=transform),
                            batch_size=batch_size,
                            shuffle=True)
    advGAN = AdvGAN_Attack(device, target_model, model_num_labels, image_nc,
                           BOX_MIN, BOX_MAX, args)

    advGAN.train(dataloader, args.epoch)
                           epochs=EPOCHS_TARGET_MODEL,
                           train_dataloader=train_dataloader,
                           test_dataloader=test_dataloader,
                           dataset_size=test_set_size)
print('TARGET LOADED!')

# train AdvGAN
print('\nTRAINING ADVGAN...')
advGAN = AdvGAN_Attack(device,
                       target_model,
                       n_labels,
                       n_channels,
                       target=TARGET,
                       lr=LR,
                       l_inf_bound=l_inf_bound,
                       alpha=ALPHA,
                       beta=BETA,
                       gamma=GAMMA,
                       kappa=KAPPA,
                       c=C,
                       n_steps_D=N_STEPS_D,
                       n_steps_G=N_STEPS_G,
                       is_relativistic=IS_RELATIVISTIC)
advGAN.train(train_dataloader, EPOCHS)

# load the trained AdvGAN
print('\nLOADING TRAINED ADVGAN!')
adv_GAN_path = './checkpoints/AdvGAN/G_epoch_{}.pth'.format(EPOCHS)
adv_GAN = models.Generator(n_channels, n_channels, TARGET).to(device)
adv_GAN.load_state_dict(torch.load(adv_GAN_path))
adv_GAN.eval()
def main():
    device = torch.device("cuda:0" if FLAGS.cuda else "cpu")

    print('Loading data...\n')
    train_transform, _ = _transforms_catsdogs(FLAGS)
    train_data = dset.ImageFolder(root=FLAGS.data_dir,
                                  transform=train_transform)
    assert train_data

    num_train = len(train_data)
    indices = list(range(num_train))
    random.shuffle(indices)
    split = int(np.floor(FLAGS.data_split * num_train))

    train_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=FLAGS.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(indices[:split]),
        num_workers=2)

    valid_loader = torch.utils.data.DataLoader(
        train_data,
        batch_size=FLAGS.batch_size,
        sampler=torch.utils.data.sampler.SubsetRandomSampler(
            indices[split:num_train]),
        num_workers=2)

    if FLAGS.train_single:
        print('Transfer training model {}...\n'.format(FLAGS.model))
        model = torch.hub.load('pytorch/vision', FLAGS.model, pretrained=True)
        for param in model.parameters():
            param.requires_grad = False

        model, param_to_train = transfer_init(model, FLAGS.model,
                                              FLAGS.classes)
        model.to(device)

        optimizer = torch.optim.SGD(param_to_train,
                                    FLAGS.lr,
                                    momentum=0.9,
                                    weight_decay=5e-4)
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                    step_size=5,
                                                    gamma=0.1)

        criterion = nn.CrossEntropyLoss()

        # Train
        best_acc = 0.0
        for epoch in range(25):
            model.train()
            scheduler.step()
            print('Epoch {}, lr: {}'.format(epoch, scheduler.get_lr()[0]))
            prefetcher = data_prefetcher(train_loader)
            data, target = prefetcher.next()
            batch_idx = 0
            while data is not None:
                optimizer.zero_grad()
                output = model(data)
                pred = output.max(1, keepdim=True)[1]
                loss = criterion(output, target)
                loss.backward()
                optimizer.step()
                correct = pred.eq(target.view_as(pred)).sum().item()
                if batch_idx % FLAGS.log_interval == 0:
                    print('[{}/{}]\tloss: {:.4f}\tbatch accuracy: {:.4f}%'.
                          format(batch_idx * FLAGS.batch_size, num_train,
                                 loss.item(), 100 * correct / data.size(0)))
                data, target = prefetcher.next()
                batch_idx += 1
            # Eval
            model.eval()
            test_loss = 0
            test_correct = 0
            with torch.no_grad():
                valid_prefetcher = data_prefetcher(valid_loader)
                data, target = valid_prefetcher.next()
                while data is not None:
                    output = model(data)
                    test_loss += criterion(output, target).item()
                    pred = output.max(1, keepdim=True)[1]
                    test_correct += pred.eq(target.view_as(pred)).sum().item()
                    data, target = valid_prefetcher.next()
            test_loss /= len(valid_loader)
            test_correct = 100 * test_correct / (1 -
                                                 FLAGS.data_split) / num_train
            print('Eval loss: {:.4f}, accuracy: {:.4f}'.format(
                test_loss, test_correct))
            if (test_correct > best_acc):
                best_acc = test_correct
                torch.save(
                    model,
                    os.path.join(FLAGS.model_dir,
                                 '{}.pth'.format(FLAGS.model)))
        print('Best test accuracy for model {}: {:.4f}'.format(
            FLAGS.model, best_acc))
    elif FLAGS.train_ensemble:
        print('Loading model...\n')
        model_names = [
            'mobilenet_v2', 'resnet18', 'densenet121', 'googlenet',
            'resnext50_32x4d'
        ]
        model = ModelEnsemble(model_names, FLAGS.classes, FLAGS.model_dir)
        model.to(device)

        optimizer = torch.optim.SGD(model.vote_layer.parameters(),
                                    FLAGS.lr,
                                    momentum=0.9,
                                    weight_decay=5e-4)
        scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                    step_size=1,
                                                    gamma=0.1)

        criterion = nn.CrossEntropyLoss()

        # Train
        print('Training ensemble model...\n')
        # model = torch.load(os.path.join(FLAGS.model_dir, 'ensemble.pth'))
        for epoch in range(2):
            model.train()
            scheduler.step()
            print('Epoch {}, lr: {}'.format(epoch, scheduler.get_lr()[0]))
            prefetcher = data_prefetcher(train_loader)
            data, target = prefetcher.next()
            batch_idx = 0
            while data is not None:
                optimizer.zero_grad()
                output = model(data)
                pred = output.max(1, keepdim=True)[1]
                loss = criterion(output, target)
                loss.backward()
                optimizer.step()
                correct = pred.eq(target.view_as(pred)).sum().item()
                if batch_idx % FLAGS.log_interval == 0:
                    print('[{}/{}]\tloss: {:.4f}\tbatch accuracy: {:.4f}%'.
                          format(batch_idx * FLAGS.batch_size, num_train,
                                 loss.item(), 100 * correct / data.size(0)))
                data, target = prefetcher.next()
                batch_idx += 1
            # Eval
            model.eval()
            test_loss = 0
            test_correct = 0
            valid_prefetcher = data_prefetcher(valid_loader)
            data, target = valid_prefetcher.next()
            while data is not None:
                output = model(data)
                test_loss += criterion(output, target).item()
                pred = output.max(1, keepdim=True)[1]
                test_correct += pred.eq(target.view_as(pred)).sum().item()
                data, target = valid_prefetcher.next()

            test_loss /= len(valid_loader)
            print('Eval loss: {:.4f}, accuracy: {:.4f}'.format(
                test_loss,
                100 * test_correct / (1 - FLAGS.data_split) / num_train))
        torch.save(model, os.path.join(FLAGS.model_dir, 'ensemble.pth'))

        # Adversarial attack
        print('Training GAN for adversarial attack...\n')
        train_loader = torch.utils.data.DataLoader(
            train_data,
            batch_size=16,
            sampler=torch.utils.data.sampler.SubsetRandomSampler(
                indices[:split]),
            num_workers=2)

        model.eval()
        advGAN = AdvGAN_Attack(device, model, FLAGS.classes, FLAGS.channels, 0,
                               1, FLAGS.model_dir)
        # advGAN.netG = torch.load(os.path.join(FLAGS.model_dir, 'netG_epoch_{}.pth'.format(FLAGS.pretrained_epoch)))

        advGAN.train(train_loader, FLAGS.epochs)

        print('Attacking ensemble model...\n')
        test_loss = 0
        test_correct = 0
        adv_examples = []
        # enough = False
        with torch.no_grad():
            valid_prefetcher = data_prefetcher(valid_loader)
            data, target = valid_prefetcher.next()
            while data is not None:
                # for i in range(64):
                #     adv_ex = data[i].squeeze().detach().cpu().numpy()
                #     adv_examples.append((0, 0, adv_ex))
                # break
                output = model(data)
                init_pred = output.max(1, keepdim=True)[1]
                init_pred = init_pred.view_as(target)

                perturbed_data = advGAN.adv_example(data)
                output = model(perturbed_data)
                test_loss += criterion(output, target).item()
                final_pred = output.max(1, keepdim=True)[1]
                final_pred = final_pred.view_as(target)
                test_correct += final_pred.eq(target).sum().item()
                if len(adv_examples) < 64 and not (final_pred == target).all():
                    indices = torch.ne(final_pred.ne(target),
                                       init_pred.ne(target)).nonzero()
                    for i in range(indices.shape[0]):
                        adv_ex = perturbed_data[
                            indices[i]].squeeze().detach().cpu().numpy()
                        adv_examples.append(
                            (init_pred[indices[i]].item(),
                             final_pred[indices[i]].item(), adv_ex))
                        # adv_ex = perturbed_data[indices[i]].squeeze()
                        # adv_examples.append(adv_ex)
                        if (len(adv_examples) >= 64):
                            # enough = True
                            break
                # if enough:
                #     break
                data, target = valid_prefetcher.next()
        test_loss /= len(valid_loader)
        print('Eval loss: {:.4f}, accuracy: {:.4f}'.format(
            test_loss,
            100 * test_correct / (1 - FLAGS.data_split) / num_train))

        # show 64 results
        if True:
            cnt = 0
            plt.figure(figsize=(8, 10))
            for i in range(8):
                for j in range(8):
                    cnt += 1
                    plt.subplot(8, 8, cnt)
                    plt.xticks([], [])
                    plt.yticks([], [])
                    orig, adv, ex = adv_examples[i * 8 + j]
                    ex = np.transpose(ex, (1, 2, 0))
                    plt.title("{} -> {}".format(orig, adv))
                    plt.imshow(ex)
            plt.tight_layout()
            plt.show()
        else:
            viz_sample = torch.stack(adv_examples, dim=0)
            print(viz_sample.shape)
            vutils.save_image(viz_sample,
                              'adv_examples.png',
                              nrow=8,
                              normalize=True)
Exemple #7
0
pretrained_model1 = "./MNIST_target_model.pth"
pretrained_model2 = "./MNIST_target_modelA.pth"
targeted_model1 = MNIST_target_net().to(device)
targeted_model1.load_state_dict(torch.load(pretrained_model1))
targeted_model1.eval()
targeted_model2 = MNIST_target_netA().to(device)
targeted_model2.load_state_dict(torch.load(pretrained_model2))
targeted_model2.eval()


model_num_labels = 10

# MNIST train dataset and dataloader declaration
mnist_dataset = torchvision.datasets.MNIST('./dataset', train=True, transform=transforms.ToTensor(), download=True)
dataloader = DataLoader(mnist_dataset, batch_size=batch_size, shuffle=True, num_workers=1)

start_time = time.time()

advGAN = AdvGAN_Attack(device,
                          targeted_model1,
                          targeted_model2,
                          model_num_labels,
                          image_nc,
                          BOX_MIN,
                          BOX_MAX)

advGAN.train(dataloader, epochs)

end_time = time.time()
print("advGAN training time is {}".format(end_time - start_time))
    device = torch.device("cuda" if (
        use_cuda and torch.cuda.is_available()) else "cpu")

    pretrained_model = "./target_model.pth"
    target_modeled, input_size = target_net(model_name, num_classes,
                                            feature_extract,
                                            use_pretrained).initialize_model()
    targeted_model = target_modeled.to(
        device)  # 除非forward否则精确写出到函数才能to(device)
    targeted_model.load_state_dict(torch.load(pretrained_model))
    targeted_model.eval()

    # train dataset and dataloader declaration
    train_data_transform = transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
    ])
    dataset = torchvision.datasets.CIFAR10('./dataset',
                                           train=True,
                                           transform=train_data_transform,
                                           download=False)
    dataloader = DataLoader(dataset,
                            batch_size=batch_size,
                            shuffle=True,
                            num_workers=1)
    advGAN = AdvGAN_Attack(device, targeted_model, num_classes, BOX_MIN,
                           BOX_MAX)
    advGAN.train(dataloader, epochs)