Exemple #1
0
 def save(self):
     logger.info(f"save: {self._fname}")
     # Save JSON config to disk
     with self._fname_json.open("w") as json_file:
         json_file.write(self._model.to_json())
     # Save weights to disk
     self._model.save_weights(str(self._fname_weights))
Exemple #2
0
 def load(self):
     logger.info(f"load: {self._fname}")
     # Reload the model from the 2 files we saved
     with self._fname_json.open("r") as json_file:
         json_config = json_file.read()
     self._model = model_from_json(json_config)
     self._model.load_weights(str(self._fname_weights))
     self.compile()
Exemple #3
0
    def fit(self,
            x=None,
            y=None,
            batch_size=None,
            epochs=1,
            verbose=1,
            callbacks=None,
            validation_split=0.0,
            validation_data=None,
            shuffle=True,
            class_weight=None,
            sample_weight=None,
            initial_epoch=0,
            steps_per_epoch=None,
            validation_steps=None,
            validation_freq=1,
            max_queue_size=10,
            workers=1,
            use_multiprocessing=False):
        if self.model_exists():
            logger.info(f"{self._fname} exists. skip fitting")
            return

        logger.info(f"start fitting")
        self.history = self._model.fit(
            x, y, batch_size, epochs, verbose, callbacks, validation_split,
            validation_data, shuffle, class_weight, sample_weight,
            initial_epoch, steps_per_epoch, validation_steps, validation_freq,
            max_queue_size, workers, use_multiprocessing)
        logger.info(f"finish fitting")
        self.save()
    def fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None, validation_freq=1, max_queue_size=10, workers=1, use_multiprocessing=False):
        teacher = ConvMinst("teacher.h5", self.temp())
        student = ConvMinst("student.h5", self.temp())

        logger.info(f"start fitting the teacher")
        self.teacher_history = teacher.fit(x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight,
                        sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size,
                        workers, use_multiprocessing)

        logger.info("evaluate the labels at temperature t")
        teacher_logit = teacher.get_logit(x)
        teacher_predicted = tf.nn.softmax(teacher_logit / self._temp)

        logger.info("train the student model at temperature t")
        self.student_history = student.fit(x, teacher_predicted, batch_size, epochs, verbose, callbacks, validation_split,
                                           validation_data, shuffle, class_weight,
                                           sample_weight, initial_epoch, steps_per_epoch, validation_steps,
                                           validation_freq, max_queue_size,
                                           workers, use_multiprocessing)

        self._model = student.get_model()
Exemple #5
0
 def attack_info(k, v):
     logger.info(f"{prefix}: {k}: {v:.2f}")
     result[k] = v