def main(use_cuda):
    """
    Advbox demo which demonstrate how to use advbox.
    """
    TOTAL_NUM = 500
    IMG_NAME = 'img'
    LABEL_NAME = 'label'

    img = fluid.layers.data(name=IMG_NAME, shape=[3, 32, 32], dtype='float32')
    # gradient should flow
    img.stop_gradient = False
    label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
    logits = resnet_cifar10(img, 32)
    cost = fluid.layers.cross_entropy(input=logits, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    #根据配置选择使用CPU资源还是GPU资源
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()

    exe = fluid.Executor(place)

    BATCH_SIZE = 1

    test_reader = paddle.batch(paddle.reader.shuffle(
        paddle.dataset.cifar.test10(), buf_size=128 * 10),
                               batch_size=BATCH_SIZE)

    fluid.io.load_params(exe,
                         "cifar10/resnet/",
                         main_program=fluid.default_main_program())

    # advbox demo
    m = PaddleModel(fluid.default_main_program(),
                    IMG_NAME,
                    LABEL_NAME,
                    logits.name,
                    avg_cost.name, (0, 255),
                    channel_axis=0)

    #形状为[1,28,28] channel_axis=0  形状为[28,28,1] channel_axis=2
    attack = SinglePixelAttack(m)

    attack_config = {"max_pixels": 32 * 32}

    # use test data to generate adversarial examples
    total_count = 0
    fooling_count = 0
    for data in test_reader():
        total_count += 1
        img = data[0][0]
        img = np.reshape(img, [3, 32, 32])

        adversary = Adversary(img, data[0][1])
        #adversary = Adversary(data[0][0], data[0][1])

        # SinglePixelAttack non-targeted attack
        adversary = attack(adversary, **attack_config)

        if adversary.is_successful():
            fooling_count += 1
            print(
                'attack success, original_label=%d, adversarial_label=%d, count=%d'
                % (data[0][1], adversary.adversarial_label, total_count))
        else:
            print('attack failed, original_label=%d, count=%d' %
                  (data[0][1], total_count))

        if total_count >= TOTAL_NUM:
            print(
                "[TEST_DATASET]: fooling_count=%d, total_count=%d, fooling_rate=%f"
                % (fooling_count, total_count,
                   float(fooling_count) / total_count))
            break
    print("SinglePixelAttack attack done")
Exemple #2
0
def main(use_cuda):
    """
    Advbox demo which demonstrate how to use advbox.
    """
    class_dim = 1000
    IMG_NAME = 'img'
    LABEL_NAME = 'label'
    #模型路径 http://paddle-imagenet-models.bj.bcebos.com/resnet_50_model.tar 下载并解压
    #pretrained_model = "models/resnet_50/115"
    pretrained_model = "models/alexnet/116/"
    image_shape = [3, 224, 224]

    image = fluid.layers.data(name=IMG_NAME,
                              shape=image_shape,
                              dtype='float32')
    label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')

    # model definition

    model = AlexNet()

    out = model.net(input=image, class_dim=class_dim)

    # 根据配置选择使用CPU资源还是GPU资源
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    #加载模型参数
    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        logger.info("Load pretrained_model")
        fluid.io.load_vars(exe, pretrained_model, predicate=if_exist)

    cost = fluid.layers.cross_entropy(input=out, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    logging.info("Build advbox")
    # advbox demo 黑盒攻击 直接传入测试版本的program
    m = PaddleBlackBoxModel(fluid.default_main_program().clone(for_test=True),
                            IMG_NAME,
                            LABEL_NAME,
                            out.name, (0, 1),
                            channel_axis=0)

    #不定向攻击
    # 形状为[1,28,28] channel_axis=0  形状为[28,28,1] channel_axis=2
    attack = SinglePixelAttack(m)

    attack_config = {"max_pixels": 224 * 224, "isPreprocessed": True}

    test_data = get_image("cat.png")
    original_data = np.copy(test_data)
    # 猫对应的标签 imagenet 2012 对应链接https://blog.csdn.net/LegenDavid/article/details/73335578
    original_label = None
    adversary = Adversary(original_data, original_label)

    logger.info("Non-targeted Attack...")
    adversary = attack(adversary, **attack_config)

    if adversary.is_successful():

        print('attack success, original_label=%d, adversarial_label=%d' %
              (adversary.original_label, adversary.adversarial_label))

        #对抗样本保存在adversary.adversarial_example
        adversary_image = np.copy(adversary.adversarial_example)

        #从[3,224,224]转换成[224,224,3]
        adversary_image *= img_std
        adversary_image += img_mean

        adversary_image = np.array(adversary_image *
                                   255).astype("uint8").transpose([1, 2, 0])

        im = Image.fromarray(adversary_image)
        im.save("adversary_image.jpg")

    else:
        print('attack failed, original_label=%d' % (adversary.original_label))

    logger.info("SinglePixelAttack attack done")