def adv_acc(y, _):
        # Generate adversarial examples
        x_adv = fgsm(model, y, eps=eps, clip_min=clip_min, clip_max=clip_max)
        # Consider the attack to be constant
        x_adv = K.stop_gradient(x_adv)

        # Accuracy on the adversarial examples
        preds_age, preds_race, preds_gender = model(x_adv)
        return categorical_accuracy(y, preds_race)
 def adv_acc(y, _):
     # Generate adversarial examples
     y_gender = tf.get_default_graph().get_tensor_by_name("gender_target:0")
     x_adv = fgsm(model, y_gender, eps=eps, clip_min=clip_min, clip_max=clip_max)
     # Consider the attack to be constant
     x_adv = K.stop_gradient(x_adv)
     
     # Accuracy on the adversarial examples
     _, preds_age = model(x_adv)
     return categorical_accuracy(y, preds_age)
Exemple #3
0
    def adv_acc(y, _):
        # Generate adversarial examples
        #y_race = tf.get_default_graph().get_tensor_by_name("race_target:0")
        x_adv = fgsm(model, y, eps=eps, clip_min=clip_min, clip_max=clip_max)
        # Consider the attack to be constant
        x_adv = K.stop_gradient(x_adv)

        # Accuracy on the adversarial examples
        preds_age, preds_race, preds_gender = model(x_adv)
        return mae(y, preds_age)