Exemple #1
0
    def test_givens_input_var(self):
        # Ensure error is raised when trying to replace an input variable.

        x = tt.scalar("x")
        y = x * 2
        with pytest.raises(RuntimeError):
            function([x], y, givens={x: x + 1})
Exemple #2
0
    def test_no_inplace(self):
        # Test that when not running inplace, the RandomState is not updated
        rf = RandomFunction("uniform", tensor.dvector)
        rng_R = random_state_type()

        post_r, out = rf(rng_R, (3, ), 0.0, 1.0)
        f = compile.function([rng_R], [post_r, out])
        rng = np.random.RandomState(utt.fetch_seed())

        rng0, val0 = f(rng)
        rng_ = np.random.RandomState(utt.fetch_seed())
        # rng should still be in a fresh state
        assert rng_R.type.values_eq(rng, rng_)
        # rng0 should be in an updated state
        assert not rng_R.type.values_eq(rng, rng0)

        f2 = compile.function(
            [compile.In(rng_R, value=rng, update=post_r, mutable=False)],
            [post_r, out])
        rng2, val2 = f2()
        # rng should be in a fresh state
        assert rng_R.type.values_eq(rng, rng_)
        # rng2 should be in an updated state
        assert not rng_R.type.values_eq(rng, rng2)
        # The updated state should be the same for both functions
        assert rng_R.type.values_eq(rng2, rng0)

        rng3, val3 = f2()
        # rng2 should not have changed
        assert rng_R.type.values_eq(rng2, rng0)
        # rng3 should be an updated again version of rng2
        assert not rng_R.type.values_eq(rng3, rng2)
        assert not rng_R.type.values_eq(rng3, rng)
Exemple #3
0
    def test_disconnected_input(self):
        a = tt.scalar("a")
        v = tt.vector("v")
        with pytest.raises(UnusedInputError):
            function([a, v], v * 2)

        function([a, v], v * 2, on_unused_input="ignore")
Exemple #4
0
 def test_masked_input(self):
     m = tt.matrix("m")
     mt = m.T
     mt.name = "m.T"
     with pytest.raises(UnusedInputError):
         function([m, mt], mt * 2)
     function([m, mt], mt * 2, on_unused_input="ignore")
Exemple #5
0
    def test_shared_state0(self):
        a = tt.scalar()  # the a is for 'anonymous' (un-named).
        x, s = tt.scalars("xs")

        f = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=0.0, update=s + a * x, mutable=True),
            ],
            s + a * x,
        )
        g = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=f.container[s], update=s - a * x, mutable=True),
            ],
            s + a * x,
        )

        f(1, 2)
        assert f[s] == 2
        assert g[s] == 2
        g(1, 2)
        assert f[s] == 0
        assert g[s] == 0
Exemple #6
0
    def test_borrow_output(self):
        a = tt.dmatrix()
        f = function([a], Out(a, borrow=False))
        o = np.ones((3, 3))
        assert o is not f(o)  # function no longer permits aliasing outputs to inputs

        f = function([a], Out(a * 4, borrow=False))
        o = np.ones((3, 3))
        four = f(o)
        assert np.all(four == 4)
        f(o + 0.1)  # should not clobber the memory used to store four
        assert np.all(four == 4)

        f = function(
            [a], Out(a * 4, borrow=True), mode=aesara.Mode("c|py_nogc", "fast_run")
        )
        o = np.ones((3, 3))
        four = f(o)
        assert np.all(four == 4)
        f(o + 0.1)  # should clobber the memory used to store four
        if aesara.config.cxx:
            assert not np.all(four == 4)
        else:
            # The Elemwise.perform method don't reuse memory
            # as some numpy version don't support that correctly.
            assert np.all(four == 4)
Exemple #7
0
    def test_shared_state2(self):
        a = tt.scalar()  # the a is for 'anonymous' (un-named).
        x, s = tt.scalars("xs")

        f = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=0.0, update=s + a * x, mutable=False),
            ],
            s + a * x,
        )
        g = function(
            [x, In(a, value=1.0, name="a"), In(s, value=f.container[s])], s + a * x
        )

        f(1, 2)
        assert f[s] == 2
        assert g[s] == 2
        f(1, 2)
        assert f[s] == 4
        assert g[s] == 4
        g(1, 2)  # has no effect on state
        assert f[s] == 4
        assert g[s] == 4
Exemple #8
0
    def test_binomial_vector(self):
        rng_R = random_state_type()
        n = tensor.lvector()
        prob = tensor.vector()
        post_r, out = binomial(rng_R, n=n, p=prob)
        assert out.ndim == 1
        f = compile.function([rng_R, n, prob], [post_r, out],
                             accept_inplace=True)

        n_val = [1, 2, 3]
        prob_val = np.asarray([0.1, 0.2, 0.3], dtype=config.floatX)
        rng = np.random.RandomState(utt.fetch_seed())
        numpy_rng = np.random.RandomState(utt.fetch_seed())

        # Arguments of size (3,)
        rng0, val0 = f(rng, n_val, prob_val)
        numpy_val0 = numpy_rng.binomial(n=n_val, p=prob_val)
        assert np.all(val0 == numpy_val0)

        # arguments of size (2,)
        rng1, val1 = f(rng0, n_val[:-1], prob_val[:-1])
        numpy_val1 = numpy_rng.binomial(n=n_val[:-1], p=prob_val[:-1])
        assert np.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = compile.function(
            [rng_R, n, prob],
            binomial(rng_R, n=n, p=prob, size=(3, )),
            accept_inplace=True,
        )
        rng2, val2 = g(rng1, n_val, prob_val)
        numpy_val2 = numpy_rng.binomial(n=n_val, p=prob_val, size=(3, ))
        assert np.all(val2 == numpy_val2)
        with pytest.raises(ValueError):
            g(rng2, n_val[:-1], prob_val[:-1])
Exemple #9
0
    def __init__(self):
        a = tt.scalar()  # the a is for 'anonymous' (un-named).
        x, s = tt.scalars("xs")
        v = tt.vector("v")

        self.s = s
        self.x = x
        self.v = v

        self.e = a * x + s

        self.f1 = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=0.0, update=s + a * x, mutable=True),
            ],
            s + a * x,
        )

        self.f2 = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=self.f1.container[s], update=s + a * x, mutable=True),
            ],
            s + a * x,
        )
Exemple #10
0
    def test_vector_arguments(self):
        rng_R = random_state_type()
        low = tensor.vector()
        post_r, out = uniform(rng_R, low=low, high=1)
        assert out.ndim == 1
        f = compile.function([rng_R, low], [post_r, out], accept_inplace=True)

        def as_floatX(thing):
            return np.asarray(thing, dtype=aesara.config.floatX)

        rng_state0 = np.random.RandomState(utt.fetch_seed())
        numpy_rng = np.random.RandomState(utt.fetch_seed())
        post0, val0 = f(rng_state0, [-5, 0.5, 0, 1])
        post1, val1 = f(post0, as_floatX([0.9]))
        numpy_val0 = as_floatX(numpy_rng.uniform(low=[-5, 0.5, 0, 1], high=1))
        numpy_val1 = as_floatX(numpy_rng.uniform(low=as_floatX([0.9]), high=1))

        assert np.all(val0 == numpy_val0)
        assert np.all(val1 == numpy_val1)

        high = tensor.vector()
        post_rb, outb = uniform(rng_R, low=low, high=high)
        assert outb.ndim == 1
        fb = compile.function([rng_R, low, high], [post_rb, outb],
                              accept_inplace=True)

        post0b, val0b = fb(post1, [-4.0, -2], [-1, 0])
        post1b, val1b = fb(post0b, [-4.0], [-1])
        numpy_val0b = as_floatX(numpy_rng.uniform(low=[-4.0, -2], high=[-1,
                                                                        0]))
        numpy_val1b = as_floatX(numpy_rng.uniform(low=[-4.0], high=[-1]))
        assert np.all(val0b == numpy_val0b)
        assert np.all(val1b == numpy_val1b)
        with pytest.raises(ValueError):
            fb(post1b, [-4.0, -2], [-1, 0, 1])
        # TODO: do we want that?
        # with pytest.raises(ValueError):
        #     fb(post1b, [-4., -2], [-1])

        size = tensor.lvector()
        post_rc, outc = uniform(rng_R, low=low, high=high, size=size, ndim=1)
        fc = compile.function([rng_R, low, high, size], [post_rc, outc],
                              accept_inplace=True)
        post0c, val0c = fc(post1b, [-4.0, -2], [-1, 0], [2])
        post1c, val1c = fc(post0c, [-4.0], [-1], [1])
        numpy_val0c = as_floatX(numpy_rng.uniform(low=[-4.0, -2], high=[-1,
                                                                        0]))
        numpy_val1c = as_floatX(numpy_rng.uniform(low=[-4.0], high=[-1]))
        assert np.all(val0c == numpy_val0c)
        assert np.all(val1c == numpy_val1c)

        with pytest.raises(ValueError):
            fc(post1c, [-4.0, -2], [-1, 0], [1, 2])
        with pytest.raises(ValueError):
            fc(post1c, [-4.0, -2], [-1, 0], [2, 1])
        with pytest.raises(ValueError):
            fc(post1c, [-4.0, -2], [-1, 0], [1])
        with pytest.raises(ValueError):
            fc(post1c, [-4.0, -2], [-1], [1])
Exemple #11
0
def test_empty_givens_updates():
    # Regression test for bug fixed in 8625e03.

    # Empty givens / updates dictionaries were not properly detected before,
    # triggering useless crashes at compile time.
    x = tt.scalar()
    y = x * 2
    function([aesara.In(x)], y, givens={})
    function([aesara.In(x)], y, updates={})
Exemple #12
0
    def test_deepcopy_trust_input(self):
        a = tt.dscalar()  # the a is for 'anonymous' (un-named).
        x, s = tt.dscalars("xs")

        f = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=0.0, update=s + a * x, mutable=True),
            ],
            s + a * x,
        )
        f.trust_input = True
        try:
            g = copy.deepcopy(f)
        except NotImplementedError as e:
            if e[0].startswith("DebugMode is not picklable"):
                return
            else:
                raise
        assert f.trust_input is g.trust_input
        f(np.asarray(2.0))
        with pytest.raises(
            (ValueError, AttributeError, aesara.compile.debugmode.InvalidValueError)
        ):
            f(2.0)
        g(np.asarray(2.0))
        with pytest.raises(
            (ValueError, AttributeError, aesara.compile.debugmode.InvalidValueError)
        ):
            g(2.0)
Exemple #13
0
 def test_none(self):
     fn = function([], None)  # ok
     rval = fn()
     assert (
         rval != []
     ), "See #254: Using None as function output leads to [] return value"
     assert rval is None
Exemple #14
0
    def test_copy(self):
        a = tt.scalar()  # the a is for 'anonymous' (un-named).
        x, s = tt.scalars("xs")

        f = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=0.0, update=s + a * x, mutable=True),
            ],
            s + a * x,
        )

        g = copy.copy(f)
        # if they both return, assume  that they return equivalent things.

        assert g.container[x].storage is not f.container[x].storage
        assert g.container[a].storage is not f.container[a].storage
        assert g.container[s].storage is not f.container[s].storage

        assert g.value[a] is f.value[a]  # should not have been copied
        assert (
            g.value[s] is not f.value[s]
        )  # should have been copied because it is mutable.
        assert not (g.value[s] != f.value[s]).any()  # its contents should be identical

        assert f(2, 1) == g(
            2
        )  # they should be in sync, default value should be copied.
        assert f(2, 1) == g(
            2
        )  # they should be in sync, default value should be copied.
        f(1, 2)  # put them out of sync
        assert f(1, 2) != g(1, 2)  # they should not be equal anymore.
    def test_lop_override(self, cls_ofg):
        x = tt.vector()
        y = 1.0 / (1.0 + tt.exp(-x))

        def lop_ov(inps, outs, grads):
            (y_, ) = outs
            (dedy_, ) = grads
            return [2.0 * y_ * (1.0 - y_) * dedy_]

        y_, dedy = tt.vector(), tt.vector()
        op_lop_ov = cls_ofg([x, y_, dedy], [2.0 * y_ * (1.0 - y_) * dedy])

        xx = tt.vector()
        yy1 = tt.sum(tt.nnet.sigmoid(xx))
        gyy1 = 2.0 * tt.grad(yy1, xx)

        for ov in [lop_ov, op_lop_ov]:
            op = cls_ofg([x], [y], lop_overrides=ov)
            yy2 = tt.sum(op(xx))
            gyy2 = tt.grad(yy2, xx)
            fn = function([xx], [gyy1, gyy2])

            xval = np.random.rand(32).astype(config.floatX)
            y1val, y2val = fn(xval)
            assert np.allclose(y1val, y2val)
Exemple #16
0
    def test_mixed_shape(self):
        # Test when the provided shape is a tuple of ints and scalar vars
        rng_R = random_state_type()
        shape0 = tensor.lscalar()
        shape = (shape0, 3)
        post_r, u = uniform(rng_R, size=shape, ndim=2)
        f = compile.function([rng_R, shape0], u)
        rng_state0 = np.random.RandomState(utt.fetch_seed())

        assert f(rng_state0, 2).shape == (2, 3)
        assert f(rng_state0, 8).shape == (8, 3)

        post_r, v = uniform(rng_R, size=shape)
        g = compile.function([rng_R, shape0], v)
        assert g(rng_state0, 2).shape == (2, 3)
        assert g(rng_state0, 8).shape == (8, 3)
Exemple #17
0
    def test_poisson(self):
        # Test that raw_random.poisson generates the same results as numpy.
        # Check over two calls to see if the random state is correctly updated.
        rng_R = random_state_type()
        # Use non-default parameters, and larger dimensions because of
        # the integer nature of the result
        post_r, out = poisson(rng_R, lam=5, size=(11, 8))

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        val0 = f()
        val1 = f()
        numpy_val0 = numpy_rng.poisson(5, size=(11, 8))
        numpy_val1 = numpy_rng.poisson(5, size=(11, 8))
        assert np.allclose(val0, numpy_val0)
        assert np.allclose(val1, numpy_val1)
Exemple #18
0
    def test_multinomial(self):
        # Test that raw_random.multinomial generates the same results as numpy.
        # Check over two calls to see if the random state is correctly updated.
        rng_R = random_state_type()
        post_r, out = multinomial(rng_R, (7, 3), 6, [0.2] * 5)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        (val0, ) = f()
        (val1, ) = f()
        numpy_val0 = numpy_rng.multinomial(6, [0.2] * 5, (7, 3))
        numpy_val1 = numpy_rng.multinomial(6, [0.2] * 5, (7, 3))
        assert np.all(val0 == numpy_val0)
        assert np.all(val1 == numpy_val1)

        assert val0.shape == (7, 3, 5)
        assert val1.shape == (7, 3, 5)
Exemple #19
0
    def test_binomial(self):
        # Test that raw_random.binomial generates the same results as numpy.
        # Check over two calls to see if the random state is correctly updated.
        rng_R = random_state_type()
        # Use non-default parameters, and larger dimensions because of
        # the integer nature of the result
        post_r, bin = binomial(rng_R, (7, 12), 5, 0.8)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [bin],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        val0 = f()
        val1 = f()
        numpy_val0 = numpy_rng.binomial(5, 0.8, size=(7, 12))
        numpy_val1 = numpy_rng.binomial(5, 0.8, size=(7, 12))
        assert np.all(val0 == numpy_val0)
        assert np.all(val1 == numpy_val1)
Exemple #20
0
    def test_normal(self):
        # Test that raw_random.normal generates the same results as numpy.
        # Check over two calls to see if the random state is correctly updated.
        rng_R = random_state_type()
        # Use non-default parameters
        post_r, out = normal(rng_R, (2, 3), 4.0, 2.0)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )

        numpy_rng = np.random.RandomState(utt.fetch_seed())
        val0 = f()
        val1 = f()
        numpy_val0 = numpy_rng.normal(4.0, 2.0, size=(2, 3))
        numpy_val1 = numpy_rng.normal(4.0, 2.0, size=(2, 3))
        assert np.allclose(val0, numpy_val0)
        assert np.allclose(val1, numpy_val1)
Exemple #21
0
    def test_random_function_ndim(self):
        # Test that random_function helper function accepts argument ndim
        rng_R = random_state_type()

        # ndim is an optional argument indicating the length of the 'shape'
        # ndim not specified, OK
        post_out4, out4 = uniform(rng_R, (4, ))

        # ndim specified, consistent with shape, OK
        post_out1_4, out1_4 = uniform(rng_R, (4, ), ndim=1)
        post_out2_4_4, out2_4_4 = uniform(rng_R, (4, 4), ndim=2)

        # ndim specified, but not compatible with shape
        with pytest.raises(ValueError):
            uniform(rng_R, (4, ), ndim=2)

        f_ok = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_out2_4_4,
                    mutable=True,
                )
            ],
            [out4, out1_4, out2_4_4],
            accept_inplace=True,
        )

        # The correct cases should execute properly
        o4, o1_4, o2_4_4 = f_ok()

        # Check the sanity of the answers
        assert np.allclose(o4, o1_4)
        assert np.allclose(o4, o2_4_4[0])
Exemple #22
0
    def test_inplace_optimization(self):
        # Test that FAST_RUN includes the random_make_inplace optimization
        # inplace = False
        rf2 = RandomFunction(np.random.RandomState.uniform, tensor.dvector)
        rng_R = random_state_type()

        # If calling RandomFunction directly, all args have to be specified,
        # because shape will have to be moved to the end
        post_r2, out2 = rf2(rng_R, (4, ), 0.0, 1.0)

        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_r2,
                    mutable=True,
                )
            ],
            out2,
            mode="FAST_RUN",
        )  # DEBUG_MODE can't pass the id-based
        # test below

        # test that the RandomState object stays the same from function call to
        # function call, but that the values returned change from call to call.

        id0 = id(f[rng_R])
        val0 = f()
        assert id0 == id(f[rng_R])
        val1 = f()
        assert id0 == id(f[rng_R])

        assert not np.allclose(val0, val1)
Exemple #23
0
    def test_random_function_noshape_args(self):
        # Test if random_function helper works with args but without shape
        rng_R = random_state_type()

        # No shape, default args -> OK
        post_out, out = uniform(rng_R, size=None, ndim=2)
        f = compile.function(
            [
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_out,
                    mutable=True,
                )
            ],
            [out],
            accept_inplace=True,
        )
        (o, ) = f()

        # No shape, args that have to be broadcasted -> OK
        low = tensor.TensorType(dtype="float64",
                                broadcastable=(False, True, True))()
        high = tensor.TensorType(dtype="float64",
                                 broadcastable=(True, True, True, False))()
        post_out2, out2 = uniform(rng_R, size=None, ndim=2, low=low, high=high)
        assert out2.ndim == 4
        assert out2.broadcastable == (True, False, True, False)

        g = compile.function(
            [
                low,
                high,
                compile.In(
                    rng_R,
                    value=np.random.RandomState(utt.fetch_seed()),
                    update=post_out2,
                    mutable=True,
                ),
            ],
            [out2],
            accept_inplace=True,
        )
        low_v = [[[3]], [[4]], [[-5]]]
        high_v = [[[[5, 8]]]]
        (o2, ) = g(low_v, high_v)
        assert o2.shape == (1, 3, 1, 2)
Exemple #24
0
    def test_normal_vector(self):
        rng_R = random_state_type()
        avg = tensor.vector()
        std = tensor.vector()
        post_r, out = normal(rng_R, avg=avg, std=std)
        assert out.ndim == 1
        f = compile.function([rng_R, avg, std], [post_r, out],
                             accept_inplace=True)

        def as_floatX(thing):
            return np.asarray(thing, dtype=aesara.config.floatX)

        avg_val = [1, 2, 3]
        std_val = as_floatX([0.1, 0.2, 0.3])
        rng = np.random.RandomState(utt.fetch_seed())
        numpy_rng = np.random.RandomState(utt.fetch_seed())

        # Arguments of size (3,)
        rng0, val0 = f(rng, avg_val, std_val)
        numpy_val0 = as_floatX(
            numpy_rng.normal(loc=as_floatX(avg_val), scale=as_floatX(std_val)))
        assert np.all(val0 == numpy_val0)

        # arguments of size (2,)
        rng1, val1 = f(rng0, avg_val[:-1], std_val[:-1])
        numpy_val1 = np.asarray(
            numpy_rng.normal(loc=avg_val[:-1], scale=std_val[:-1]),
            dtype=aesara.config.floatX,
        )
        assert np.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = compile.function(
            [rng_R, avg, std],
            normal(rng_R, avg=avg, std=std, size=(3, )),
            accept_inplace=True,
        )
        rng2, val2 = g(rng1, avg_val, std_val)
        numpy_val2 = np.asarray(
            numpy_rng.normal(loc=avg_val, scale=std_val, size=(3, )),
            dtype=aesara.config.floatX,
        )
        assert np.all(val2 == numpy_val2)
        with pytest.raises(ValueError):
            g(rng2, avg_val[:-1], std_val[:-1])
Exemple #25
0
    def test_multinomial_vector(self):
        rng_R = random_state_type()
        n = tensor.lvector()
        pvals = tensor.matrix()
        post_r, out = multinomial(rng_R, n=n, pvals=pvals)
        assert out.ndim == 2
        f = compile.function([rng_R, n, pvals], [post_r, out],
                             accept_inplace=True)

        n_val = [1, 2, 3]
        pvals_val = [[0.1, 0.9], [0.2, 0.8], [0.3, 0.7]]
        pvals_val = np.asarray(pvals_val, dtype=config.floatX)
        rng = np.random.RandomState(utt.fetch_seed())
        numpy_rng = np.random.RandomState(utt.fetch_seed())

        # Arguments of size (3,)
        rng0, val0 = f(rng, n_val, pvals_val)
        numpy_val0 = np.asarray([
            numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val, pvals_val)
        ])
        assert np.all(val0 == numpy_val0)

        # arguments of size (2,)
        rng1, val1 = f(rng0, n_val[:-1], pvals_val[:-1])
        numpy_val1 = np.asarray([
            numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val[:-1], pvals_val[:-1])
        ])
        assert np.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = compile.function(
            [rng_R, n, pvals],
            multinomial(rng_R, n=n, pvals=pvals, size=(3, )),
            accept_inplace=True,
        )
        rng2, val2 = g(rng1, n_val, pvals_val)
        numpy_val2 = np.asarray([
            numpy_rng.multinomial(n=nv, pvals=pv)
            for nv, pv in zip(n_val, pvals_val)
        ])
        assert np.all(val2 == numpy_val2)
        with pytest.raises(ValueError):
            g(rng2, n_val[:-1], pvals_val[:-1])
Exemple #26
0
 def test_shared_state_not_implicit(self):
     # This test is taken from the documentation in
     # doc/topics/function.txt. If it does not pass anymore and yet the
     # behavior is still intended the doc and the test should both be
     # updated accordingly.
     x, s = tt.scalars("xs")
     inc = function([x, In(s, update=(s + x), value=10.0)], [])
     dec = function(
         [x, In(s, update=(s - x), value=inc.container[s], implicit=False)], []
     )
     assert dec[s] is inc[s]
     inc[s] = 2
     assert dec[s] == 2
     dec(1)
     assert inc[s] == 1
     dec(1, 0)
     assert inc[s] == -1
     assert dec[s] == -1
    def test_shared_grad(self, cls_ofg):
        x, y, z = tt.matrices("xyz")
        s = shared(np.random.rand(2, 2).astype(config.floatX))
        e = x + y * z + s
        op = cls_ofg([x, y, z], [e])
        f = op(x, y, z)
        f = f - tt.grad(tt.sum(f), y)
        fn = function([x, y, z], f)
        xv = np.ones((2, 2), dtype=config.floatX)
        yv = np.ones((2, 2), dtype=config.floatX) * 3
        zv = np.ones((2, 2), dtype=config.floatX) * 5
        assert np.allclose(11.0 + s.get_value(), fn(xv, yv, zv))

        # grad again the shared variable
        f = op(x, y, z)
        f = f - tt.grad(tt.sum(f), s)
        fn = function([x, y, z], f)
        assert np.allclose(15.0 + s.get_value(), fn(xv, yv, zv))
Exemple #28
0
    def test_random_integers_vector(self):
        rng_R = random_state_type()
        low = tensor.lvector()
        high = tensor.lvector()
        post_r, out = random_integers(rng_R, low=low, high=high)
        assert out.ndim == 1
        f = compile.function([rng_R, low, high], [post_r, out],
                             accept_inplace=True)

        low_val = [100, 200, 300]
        high_val = [110, 220, 330]
        rng = np.random.RandomState(utt.fetch_seed())
        numpy_rng = np.random.RandomState(utt.fetch_seed())

        # Arguments of size (3,)
        rng0, val0 = f(rng, low_val, high_val)
        numpy_val0 = np.asarray([
            numpy_rng.randint(low=lv, high=hv + 1)
            for lv, hv in zip(low_val, high_val)
        ])
        assert np.all(val0 == numpy_val0)

        # arguments of size (2,)
        rng1, val1 = f(rng0, low_val[:-1], high_val[:-1])
        numpy_val1 = np.asarray([
            numpy_rng.randint(low=lv, high=hv + 1)
            for lv, hv in zip(low_val[:-1], high_val[:-1])
        ])
        assert np.all(val1 == numpy_val1)

        # Specifying the size explicitly
        g = compile.function(
            [rng_R, low, high],
            random_integers(rng_R, low=low, high=high, size=(3, )),
            accept_inplace=True,
        )
        rng2, val2 = g(rng1, low_val, high_val)
        numpy_val2 = np.asarray([
            numpy_rng.randint(low=lv, high=hv + 1)
            for lv, hv in zip(low_val, high_val)
        ])
        assert np.all(val2 == numpy_val2)
        with pytest.raises(ValueError):
            g(rng2, low_val[:-1], high_val[:-1])
Exemple #29
0
 def t():
     f = function(
         [
             In(a, name={"adsf", ()}, value=1.0),
             In(x, name=(), value=2.0),
             In(s, name=tt.scalar(), value=3.0),
         ],
         a + x + s,
     )
     return f
Exemple #30
0
    def test_deepcopy(self):
        a = tt.scalar()  # the a is for 'anonymous' (un-named).
        x, s = tt.scalars("xs")

        f = function(
            [
                x,
                In(a, value=1.0, name="a"),
                In(s, value=0.0, update=s + a * x, mutable=True),
            ],
            s + a * x,
        )
        try:
            g = copy.deepcopy(f)
        except NotImplementedError as e:
            if e[0].startswith("DebugMode is not picklable"):
                return
            else:
                raise
        # if they both return, assume  that they return equivalent things.
        # print [(k,id(k)) for k in f.finder.keys()]
        # print [(k,id(k)) for k in g.finder.keys()]

        assert g.container[0].storage is not f.container[0].storage
        assert g.container[1].storage is not f.container[1].storage
        assert g.container[2].storage is not f.container[2].storage
        assert x not in g.container
        assert x not in g.value
        assert len(f.defaults) == len(g.defaults)
        assert f._check_for_aliased_inputs is g._check_for_aliased_inputs
        assert f.name == g.name
        assert f.maker.fgraph.name == g.maker.fgraph.name
        # print 'f.defaults = %s' % (f.defaults, )
        # print 'g.defaults = %s' % (g.defaults, )
        for ((f_req, f_feed, f_val), (g_req, g_feed, g_val)) in zip(
            f.defaults, g.defaults
        ):
            assert f_req == g_req and f_feed == g_feed and f_val == g_val

        assert g.value[1] is not f.value[1]  # should not have been copied
        assert (
            g.value[2] is not f.value[2]
        )  # should have been copied because it is mutable.
        assert not (g.value[2] != f.value[2]).any()  # its contents should be identical

        assert f(2, 1) == g(
            2
        )  # they should be in sync, default value should be copied.
        assert f(2, 1) == g(
            2
        )  # they should be in sync, default value should be copied.
        f(1, 2)  # put them out of sync
        assert f(1, 2) != g(1, 2)  # they should not be equal anymore.
        g(1, 2)  # put them back in sync
        assert f(3) == g(3)  # They should be in sync again.