def make_node(self, *inputs):
     inputs = list(map(as_variable, inputs))
     for input in inputs:
         if not isinstance(input.type, MyType):
             raise Exception("Error 1")
         outputs = [MyType(sum([input.type.thingy for input in inputs]))()]
         return Apply(self, inputs, outputs)
    def make_node(self, img, topgrad, shape=None):
        img = as_tensor_variable(img)
        topgrad = as_tensor_variable(topgrad)
        img, topgrad = self.as_common_dtype(img, topgrad)
        if img.type.ndim != 5:
            raise TypeError("img must be 5D tensor")
        if topgrad.type.ndim != 5:
            raise TypeError("topgrad must be 5D tensor")
        if shape is None:
            if self.subsample != (1, 1, 1) or self.border_mode == "half":
                raise ValueError(
                    "shape must be given if subsample != (1, 1, 1)"
                    ' or border_mode == "half"')
            height_width_depth = []
        else:
            height_width_depth = [
                as_tensor_variable(shape[0]).astype("int64"),
                as_tensor_variable(shape[1]).astype("int64"),
                as_tensor_variable(shape[2]).astype("int64"),
            ]

        broadcastable = [
            topgrad.type.broadcastable[1],
            img.type.broadcastable[1],
            False,
            False,
            False,
        ]
        dtype = img.type.dtype
        return Apply(
            self,
            [img, topgrad] + height_width_depth,
            [TensorType(dtype, broadcastable)()],
        )
Exemple #3
0
    def make_node(self,
                  x,
                  scale,
                  bias,
                  estimated_mean,
                  estimated_variance,
                  epsilon=1e-4):
        x = as_tensor_variable(x)
        scale = as_tensor_variable(scale)
        bias = as_tensor_variable(bias)
        estimated_mean = as_tensor_variable(estimated_mean)
        estimated_variance = as_tensor_variable(estimated_variance)
        epsilon = as_tensor_variable(epsilon)
        # Upcast to common dtype on the non-scalar
        # Keep as is dtype of scalar (epsilon)
        x, scale, bias, estimated_mean, estimated_variance = as_common_dtype(
            x, scale, bias, estimated_mean, estimated_variance)
        assert (x.ndim == scale.ndim == bias.ndim == estimated_mean.ndim ==
                estimated_variance.ndim)

        return Apply(
            self,
            [x, scale, bias, estimated_mean, estimated_variance, epsilon],
            [x.type()],
        )
Exemple #4
0
 def make_node(self, *inputs):
     assert len(inputs) == self.nin
     inputs = [as_variable(i) for i in inputs]
     for input in inputs:
         if input.type is not tdouble:
             raise Exception("Error 1")
     outputs = [double(self.name + "_R")]
     return Apply(self, inputs, outputs)
Exemple #5
0
 def make_node(self, *inputs):
     assert len(inputs) == self.nin
     inputs = list(map(as_variable, inputs))
     for input in inputs:
         if not isinstance(input.type, MyType):
             raise Exception("Error 1")
     outputs = [MyVariable(self.name + "_R") for i in range(self.nout)]
     return Apply(self, inputs, outputs)
    def make_node(self, o, x, y, xIdx, yIdx, alpha=None):
        """
        Compute the dot product of the specified pieces of vectors
        and matrices.

        The parameter types are actually their expected shapes
        relative to each other.

        Parameters
        ----------
        o : xBlocks, yBlocks, xSize, ySize
        x : batch, xWin, xSize
        y : batch, yWin, ySize
        xIdx : batch, iWin
            indexes of the x blocks
        yIdx : batch, oWin
            indexes of the y blocks

        Returns
        -------
        (xBlocks, yBlocks, xSize, ySize)
            outer(x[i], y[j]) + o[i, j]

        Notes
        -----
        - `batch` is the number of examples in a minibatch (batch size).
        - `xBlocks` is the total number of blocks in x.
        - `xSize` is the size of each of these x blocks.
        - `xWin` is the number of blocks that will be used as x. Which blocks
          will be used is specified in `xIdx`.
        - `yBlocks` is the number or possible y blocks.
        - `ySize` is the size of each of these y blocks.
        - `yWin` is the number of y blocks that will actually be computed.
          Which blocks will be computed is specified in `yIdx`.

        """
        one = aesara.tensor.constant(np.asarray(1.0, dtype="float32"))
        o = aesara.tensor.as_tensor_variable(o)
        x = aesara.tensor.as_tensor_variable(x)
        y = aesara.tensor.as_tensor_variable(y)

        if alpha is None:
            alpha = one

        return Apply(self, [o, x, y, xIdx, yIdx, alpha], [o.type()])
    def make_node(self, img, kern):
        img = as_tensor_variable(img)
        kern = as_tensor_variable(kern)
        img, kern = self.as_common_dtype(img, kern)
        if img.type.ndim != 5:
            raise TypeError("img must be 5D tensor")
        if kern.type.ndim != 5:
            raise TypeError("kern must be 5D tensor")

        broadcastable = [
            img.type.broadcastable[0],
            kern.type.broadcastable[0],
            False,
            False,
            False,
        ]
        dtype = img.type.dtype
        return Apply(self, [img, kern], [TensorType(dtype, broadcastable)()])
Exemple #8
0
    def make_node(self, x, dy, scale, x_mean, x_invstd, epsilon=1e-4):
        x = as_tensor_variable(x)
        dy = as_tensor_variable(dy)
        scale = as_tensor_variable(scale)
        x_mean = as_tensor_variable(x_mean)
        x_invstd = as_tensor_variable(x_invstd)
        epsilon = as_tensor_variable(epsilon)

        # Upcast to common dtype on the non-scalar
        # Keep as is dtype of scalar (epsilon)
        x, dy, scale, x_mean, x_invstd = as_common_dtype(
            x, dy, scale, x_mean, x_invstd)
        assert x.ndim == dy.ndim == scale.ndim == x_mean.ndim == x_invstd.ndim
        return Apply(
            self,
            [x, dy, scale, x_mean, x_invstd, epsilon],
            [x.type(), scale.type(), scale.type()],
        )
Exemple #9
0
 def make_node(
     self,
     x,
     scale,
     bias,
     epsilon=1e-4,
     running_average_factor=0.1,
     running_mean=None,
     running_var=None,
 ):
     x = as_tensor_variable(x)
     scale = as_tensor_variable(scale)
     bias = as_tensor_variable(bias)
     epsilon = as_tensor_variable(epsilon)
     running_average_factor = as_tensor_variable(running_average_factor)
     if running_mean is not None:
         running_mean = as_tensor_variable(running_mean)
     if running_var is not None:
         running_var = as_tensor_variable(running_var)
     assert x.ndim == scale.ndim == bias.ndim
     assert (running_mean is None
             and running_var is None) or (running_mean is not None
                                          and running_var is not None)
     assert running_mean is None or running_mean.ndim == x.ndim
     assert running_var is None or running_var.ndim == x.ndim
     # Upcast to common dtype on the non-scalar
     # Keep as is dtype of scalar (epsilon and running_average_factor)
     if running_mean:
         x, scale, bias, running_mean, running_var = as_common_dtype(
             x, scale, bias, running_mean, running_var)
     else:
         x, scale, bias = as_common_dtype(x, scale, bias)
     inputs = [x, scale, bias, epsilon, running_average_factor]
     output_types = [x.type(), scale.type(), scale.type()]
     if running_mean is not None and running_var is not None:
         inputs.append(running_mean)
         inputs.append(running_var)
         output_types.append(scale.type())
         output_types.append(scale.type())
     return Apply(self, inputs, output_types)
Exemple #10
0
    def make_node(self, kern, topgrad, shape=None):
        kern = as_tensor_variable(kern)
        topgrad = as_tensor_variable(topgrad)
        kern, topgrad = self.as_common_dtype(kern, topgrad)
        if kern.type.ndim != 5:
            raise TypeError("kern must be 5D tensor")
        if topgrad.type.ndim != 5:
            raise TypeError("topgrad must be 5D tensor")
        if shape is None:
            if self.subsample != (1, 1, 1):
                raise ValueError(
                    "shape must be given if subsample != (1, 1, 1)")
            height_width_depth = []
        else:
            height_width_depth = [
                as_tensor_variable(shape[0]).astype("int64"),
                as_tensor_variable(shape[1]).astype("int64"),
                as_tensor_variable(shape[2]).astype("int64"),
            ]

        if self.num_groups > 1:
            broadcastable = [
                topgrad.type.broadcastable[0], False, False, False, False
            ]
        else:
            broadcastable = [
                topgrad.type.broadcastable[0],
                kern.type.broadcastable[1],
                False,
                False,
                False,
            ]
        dtype = kern.type.dtype
        return Apply(
            self,
            [kern, topgrad] + height_width_depth,
            [TensorType(dtype, broadcastable)()],
        )
 def make_node(self, i):
     return Apply(self, [i], [scalar.uint64()])
 def make_node(self):
     return Apply(self, [], [MyType("test")()])
 def make_node(self, input):
     input = scalar.as_scalar(input)
     output = input.type()
     return Apply(self, [input], [output])
    def make_node(self, o, W, h, inputIdx, outputIdx):
        """
        Compute the dot product of the specified pieces of vectors
        and matrices.

        The parameter types are actually their expected shapes
        relative to each other.

        Parameters
        ----------
        o : batch, oWin, oSize
            output vector
        W : iBlocks, oBlocks, iSize, oSize
            weight matrix
        h : batch, iWin, iSize
            input from lower layer (sparse)
        inputIdx : batch, iWin
            indexes of the input blocks
        outputIdx : batch, oWin
            indexes of the output blocks

        Returns
        -------
        (batch, oWin, oSize)
            dot(W[i, j], h[i]) + o[j]

        Notes
        -----
        - `batch` is the number of examples in a minibatch (batch size).
        - `iBlocks` is the total number of blocks in the input (from lower
            layer).
        - `iSize` is the size of each of these input blocks.
        - `iWin` is the number of blocks that will be used as inputs. Which
           blocks will be used is specified in `inputIdx`.
        - `oBlocks` is the number or possible output blocks.
        - `oSize` is the size of each of these output blocks.
        - `oWin` is the number of output blocks that will actually be computed.
            Which blocks will be computed is specified in `outputIdx`.

        """
        o = aesara.tensor.as_tensor_variable(o)
        W = aesara.tensor.as_tensor_variable(W)
        h = aesara.tensor.as_tensor_variable(h)
        inputIdx = aesara.tensor.as_tensor_variable(inputIdx)
        outputIdx = aesara.tensor.as_tensor_variable(outputIdx)

        if o.ndim != 3:
            raise TypeError("The output o must be a 2D tensor")
        if W.ndim != 4:
            raise TypeError("The weight matrix W must be a 4D tensor")
        if h.ndim != 3:
            raise TypeError("The input h must be a 3D tensor")
        if inputIdx.ndim != 2:
            raise TypeError("The input indices inputIdx must be a 2D tensor")
        if outputIdx.ndim != 2:
            raise TypeError("The output indices outputIdx must be a 2D tensor")

        assert inputIdx.type.dtype in discrete_dtypes
        assert outputIdx.type.dtype in discrete_dtypes

        return Apply(self, [o, W, h, inputIdx, outputIdx], [o.type()])