Exemple #1
0
def test_extra_ops():
    a = matrix("a")
    a.tag.test_value = np.arange(6, dtype=config.floatX).reshape((3, 2))

    out = aet_extra_ops.cumsum(a, axis=0)
    fgraph = FunctionGraph([a], [out])
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    out = aet_extra_ops.cumprod(a, axis=1)
    fgraph = FunctionGraph([a], [out])
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    out = aet_extra_ops.diff(a, n=2, axis=1)
    fgraph = FunctionGraph([a], [out])
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    out = aet_extra_ops.repeat(a, (3, 3), axis=1)
    fgraph = FunctionGraph([a], [out])
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    # This function also cannot take symbolic input.
    c = aet.as_tensor(5)
    out = aet_extra_ops.bartlett(c)
    fgraph = FunctionGraph([], [out])
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    with pytest.raises(NotImplementedError):
        out = aet_extra_ops.fill_diagonal(a, c)
        fgraph = FunctionGraph([a], [out])
        compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    with pytest.raises(NotImplementedError):
        out = aet_extra_ops.fill_diagonal_offset(a, c, c)
        fgraph = FunctionGraph([a], [out])
        compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    with pytest.raises(NotImplementedError):
        out = aet_extra_ops.Unique(axis=1)(a)
        fgraph = FunctionGraph([a], [out])
        compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    indices = np.arange(np.product((3, 4)))
    out = aet_extra_ops.unravel_index(indices, (3, 4), order="C")
    fgraph = FunctionGraph([], out)
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs],
                       must_be_device_array=False)

    multi_index = np.unravel_index(np.arange(np.product((3, 4))), (3, 4))
    out = aet_extra_ops.ravel_multi_index(multi_index, (3, 4))
    fgraph = FunctionGraph([], [out])
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs],
                       must_be_device_array=False)

    # The inputs are "concrete", yet it still has problems?
    out = aet_extra_ops.Unique()(aet.as_tensor(
        np.arange(6, dtype=config.floatX).reshape((3, 2))))
    fgraph = FunctionGraph([], [out])
    compare_jax_and_py(fgraph, [])
Exemple #2
0
def test_extra_ops_omni():
    a = matrix("a")
    a.tag.test_value = np.arange(6, dtype=config.floatX).reshape((3, 2))

    # This function also cannot take symbolic input.
    c = aet.as_tensor(5)
    out = aet_extra_ops.bartlett(c)
    fgraph = FunctionGraph([], [out])
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs])

    multi_index = np.unravel_index(np.arange(np.product((3, 4))), (3, 4))
    out = aet_extra_ops.ravel_multi_index(multi_index, (3, 4))
    fgraph = FunctionGraph([], [out])
    compare_jax_and_py(fgraph, [get_test_value(i) for i in fgraph.inputs],
                       must_be_device_array=False)

    # The inputs are "concrete", yet it still has problems?
    out = aet_extra_ops.Unique()(aet.as_tensor(
        np.arange(6, dtype=config.floatX).reshape((3, 2))))
    fgraph = FunctionGraph([], [out])
    compare_jax_and_py(fgraph, [])