Exemple #1
0
    def test_AveragePoolGrad_grad_stride(self, example, ignore_border, mode):
        # checks the gradient of the gradient for
        # the case that stride is used
        rng = np.random.RandomState(utt.fetch_seed())
        (avgpoolshp, stride, inputsize) = example
        imval = rng.rand(*inputsize)
        grad_shape = Pool.out_shape(
            imval.shape,
            avgpoolshp,
            ndim=len(avgpoolshp),
            ignore_border=ignore_border,
            stride=stride,
        )

        # skip the grad verification when the output is empty
        if np.prod(grad_shape) != 0:
            grad_val = rng.rand(*grad_shape)

            def mp(input, grad):
                grad_op = AveragePoolGrad(ndim=len(avgpoolshp),
                                          ignore_border=ignore_border,
                                          mode=mode)
                return grad_op(input, grad, avgpoolshp, stride)

            utt.verify_grad(mp, [imval, grad_val], rng=rng)
Exemple #2
0
    def test_DownsampleFactorMaxPaddingStride_grad_grad(self):
        rng = np.random.RandomState(utt.fetch_seed())
        # maxpool, stride, pad, input sizes
        examples = (
            ((3, ), (2, ), (2, ), (10, )),
            (
                (3, ),
                (2, ),
                (2, ),
                (
                    2,
                    10,
                ),
            ),
            (
                (3, ),
                (2, ),
                (2, ),
                (
                    2,
                    1,
                    10,
                ),
            ),
            ((5, 3), (3, 2), (2, 2), (1, 1, 10, 10)),
            ((3, 5), (2, 3), (2, 1), (1, 1, 10, 5)),
            ((5, 3, 3), (3, 2, 2), (2, 2, 2), (1, 1, 10, 5, 5)),
            ((3, 3, 5), (2, 2, 3), (2, 2, 1), (1, 1, 5, 5, 10)),
        )

        for (maxpoolshp, stridesize, padsize, inputsize) in examples:
            imval = rng.rand(*inputsize) * 10.0

            grad_shape = Pool.out_shape(
                imval.shape,
                maxpoolshp,
                ndim=len(maxpoolshp),
                stride=stridesize,
                ignore_border=True,
                pad=padsize,
            )
            grad_val = rng.rand(*grad_shape) * 10.0

            def mp(input, grad):
                out = Pool(
                    ndim=len(maxpoolshp),
                    ignore_border=True,
                )(input, maxpoolshp, stridesize, padsize)
                grad_op = MaxPoolGrad(ndim=len(maxpoolshp), ignore_border=True)
                return grad_op(input, out, grad, maxpoolshp, stridesize,
                               padsize)

            utt.verify_grad(mp, [imval, grad_val], rng=rng)
Exemple #3
0
    def test_AveragePoolPaddingStride_grad_grad(self):
        rng = np.random.RandomState(utt.fetch_seed())
        # avgpool, stride, pad, input sizes
        examples = (
            ((3, ), (2, ), (2, ), (10, )),
            (
                (3, ),
                (2, ),
                (2, ),
                (
                    2,
                    10,
                ),
            ),
            (
                (3, ),
                (2, ),
                (2, ),
                (
                    2,
                    1,
                    10,
                ),
            ),
            ((5, 3), (3, 2), (2, 2), (1, 1, 10, 10)),
            ((3, 5), (2, 3), (2, 1), (1, 1, 10, 5)),
            ((5, 3, 2), (3, 2, 1), (2, 2, 2), (1, 1, 10, 5, 5)),
        )

        for (avgpoolshp, stridesize, padsize, inputsize) in examples:
            imval = rng.rand(*inputsize) * 10.0

            # 'average_exc_pad' with non-zero padding is not implemented
            for mode in ["sum", "average_inc_pad"]:
                grad_shape = Pool.out_shape(
                    imval.shape,
                    avgpoolshp,
                    ndim=len(avgpoolshp),
                    stride=stridesize,
                    ignore_border=True,
                    pad=padsize,
                )
                grad_val = rng.rand(*grad_shape) * 10.0

                def mp(input, grad):
                    grad_op = AveragePoolGrad(ndim=len(avgpoolshp),
                                              ignore_border=True,
                                              mode=mode)
                    return grad_op(input, grad, avgpoolshp, stridesize,
                                   padsize)

                utt.verify_grad(mp, [imval, grad_val], rng=rng)
Exemple #4
0
    def test_DownsampleFactorMaxGrad_grad(self):
        rng = np.random.RandomState(utt.fetch_seed())
        # maxpool, input sizes
        examples = (
            ((2, ), (2, )),
            ((2, ), (2, 3)),
            ((1, 1), (2, 3, 3, 4)),
            ((3, 2), (2, 3, 3, 4)),
            ((2, 3), (2, 3, 3, 4)),
            ((1, 1, 1), (2, 3, 3, 4)),
            ((3, 2, 2), (2, 3, 3, 4)),
            ((2, 3, 2), (2, 3, 3, 4)),
            ((2, 2, 3), (2, 3, 3, 4)),
            ((2, 2, 3), (2, 1, 3, 3, 4)),
        )

        for (maxpoolshp, inputsize) in examples:
            imval = rng.rand(*inputsize) * 10.0
            # more variance means numeric gradient will be more accurate
            for ignore_border in [True, False]:
                # print 'maxpoolshp =', maxpoolshp
                # print 'ignore_border =', ignore_border
                # The shape of the gradient will be the shape of the output
                grad_shape = Pool.out_shape(
                    imval.shape,
                    maxpoolshp,
                    ndim=len(maxpoolshp),
                    ignore_border=ignore_border,
                )
                grad_val = rng.rand(*grad_shape) * 10.0

                def mp(input, grad):
                    out = Pool(ndim=len(maxpoolshp),
                               ignore_border=ignore_border)(input, maxpoolshp)
                    grad_op = MaxPoolGrad(ndim=len(maxpoolshp),
                                          ignore_border=ignore_border)
                    return grad_op(input, out, grad, maxpoolshp)

                utt.verify_grad(mp, [imval, grad_val], rng=rng)
Exemple #5
0
    def test_AveragePoolGrad_grad(self):
        rng = np.random.RandomState(utt.fetch_seed())
        # avgpool, input sizes
        examples = (
            ((2, ), (2, )),
            ((2, ), (2, 3)),
            ((1, 1), (2, 3, 3, 4)),
            ((3, 2), (2, 3, 3, 4)),
            ((2, 3), (2, 3, 3, 4)),
            ((3, 2, 2), (2, 3, 3, 4)),
            ((2, 2, 3), (2, 3, 3, 4)),
        )

        for (avgpoolshp, inputsize) in examples:
            imval = rng.rand(*inputsize) * 10.0
            # more variance means numeric gradient will be more accurate
            for ignore_border in [True, False]:
                for mode in ["sum", "average_inc_pad", "average_exc_pad"]:
                    # print 'maxpoolshp =', maxpoolshp
                    # print 'ignore_border =', ignore_border
                    # The shape of the gradient will be the shape of the output
                    grad_shape = Pool.out_shape(
                        imval.shape,
                        avgpoolshp,
                        ndim=len(avgpoolshp),
                        ignore_border=ignore_border,
                    )
                    grad_val = rng.rand(*grad_shape) * 10.0

                    def mp(input, grad):
                        grad_op = AveragePoolGrad(ndim=len(avgpoolshp),
                                                  ignore_border=ignore_border,
                                                  mode=mode)
                        return grad_op(input, grad, avgpoolshp)

                    utt.verify_grad(mp, [imval, grad_val], rng=rng)
Exemple #6
0
 def infer_shape(self, fgraph, node, in_shapes):
     ws, stride, pad = [node.inputs[1], node.inputs[2], node.inputs[3]]
     shp = Pool.out_shape(in_shapes[0], ws, self.ignore_border, stride, pad,
                          self.ndim)
     return [shp]
Exemple #7
0
 def test_out_shape(self):
     assert Pool.out_shape((9, 8, 6), (2, 2)) == [9, 4, 3]
     assert Pool.out_shape((8, 6), (2, 2)) == [4, 3]
Exemple #8
0
    def test_DownsampleFactorMax(self):
        rng = np.random.RandomState(utt.fetch_seed())
        # maxpool, input size
        examples = (
            ((2, ), (16, )),
            (
                (2, ),
                (
                    4,
                    16,
                ),
            ),
            (
                (2, ),
                (
                    4,
                    2,
                    16,
                ),
            ),
            ((1, 1), (4, 2, 16, 16)),
            ((2, 2), (4, 2, 16, 16)),
            ((3, 3), (4, 2, 16, 16)),
            ((3, 2), (4, 2, 16, 16)),
            ((3, 2, 2), (3, 2, 16, 16, 16)),
            ((2, 2, 3, 2), (3, 2, 6, 6, 6, 5)),
        )

        for example, ignore_border, mode in product(
                examples,
            [True, False],
            ["max", "sum", "average_inc_pad", "average_exc_pad"],
        ):
            (maxpoolshp, inputsize) = example
            imval = rng.rand(*inputsize)
            images = aesara.shared(imval)

            # Pure Numpy computation
            numpy_output_val = self.numpy_max_pool_nd(imval,
                                                      maxpoolshp,
                                                      ignore_border,
                                                      mode=mode)

            # The pool_2d or pool_3d helper methods
            if len(maxpoolshp) == 2:
                output = pool_2d(images, maxpoolshp, ignore_border, mode=mode)
                f = function(
                    [],
                    [
                        output,
                    ],
                )
                output_val = f()
                utt.assert_allclose(output_val, numpy_output_val)
            elif len(maxpoolshp) == 3:
                output = pool_3d(images, maxpoolshp, ignore_border, mode=mode)
                f = function(
                    [],
                    [
                        output,
                    ],
                )
                output_val = f()
                utt.assert_allclose(output_val, numpy_output_val)

            # Pool op
            maxpool_op = Pool(ndim=len(maxpoolshp),
                              ignore_border=ignore_border,
                              mode=mode)(images, maxpoolshp)

            output_shape = Pool.out_shape(
                imval.shape,
                maxpoolshp,
                ndim=len(maxpoolshp),
                ignore_border=ignore_border,
            )
            utt.assert_allclose(np.asarray(output_shape),
                                numpy_output_val.shape)
            f = function([], maxpool_op)
            output_val = f()
            utt.assert_allclose(output_val, numpy_output_val)