Exemple #1
0
 def underdamped(self):
     Q = self.Q
     f = tt.sqrt(tt.maximum(4.0 * Q ** 2 - 1.0, self.eps))
     a = self.S0 * self.w0 * Q
     c = 0.5 * self.w0 / Q
     empty = tt.zeros(0, dtype=self.dtype)
     return (
         empty,
         empty,
         tt.stack([a]),
         tt.stack([a / f]),
         tt.stack([c]),
         tt.stack([c * f]),
     )
Exemple #2
0
 def overdamped(self):
     Q = self.Q
     f = tt.sqrt(tt.maximum(1.0 - 4.0 * Q ** 2, self.eps))
     empty = tt.zeros(0, dtype=self.dtype)
     return (
         0.5
         * self.S0
         * self.w0
         * Q
         * tt.stack([1.0 + 1.0 / f, 1.0 - 1.0 / f]),
         0.5 * self.w0 / Q * tt.stack([1.0 - f, 1.0 + f]),
         empty,
         empty,
         empty,
         empty,
     )
Exemple #3
0
def get_cl(u1, u2):
    u1 = as_tensor_variable(u1)
    u2 = as_tensor_variable(u2)
    c0 = 1 - u1 - 1.5 * u2
    c1 = u1 + 2 * u2
    c2 = -0.25 * u2
    norm = np.pi * (c0 + c1 / 1.5)
    return tt.stack([c0, c1, c2]) / norm
Exemple #4
0
    def forward(self, x):
        p = x[0]
        b = x[1]
        pl = self.min_radius

        r11 = (b / (1 + pl) - 1) * (1 - self.Ar) + 1
        r21 = (p - pl) / self.dr

        arg = p - b - self.dr + 1
        q1 = (arg / self.dr)**2
        q2 = (pl - b + 1) / arg
        r12 = q1 * self.Ar
        r22 = q2

        y = tt.switch(b <= 1, tt.stack((r11, r21), axis=0),
                      tt.stack((r12, r22), axis=0))

        return tt.log(y) - tt.log(1 - y)
Exemple #5
0
    def _get_position_and_velocity(self, t, parallax=None):
        sinf, cosf = self._get_true_anomaly(t)

        if self.ecc is None:
            r = 1.0
            vx, vy, vz = self._rotate_vector(-self.K0 * sinf, self.K0 * cosf)
        else:
            r = (1.0 - self.ecc**2) / (1 + self.ecc * cosf)
            vx, vy, vz = self._rotate_vector(-self.K0 * sinf,
                                             self.K0 * (cosf + self.ecc))

        x, y, z = self._rotate_vector(r * cosf, r * sinf)

        pos = tt.stack((x, y, z), axis=-1)
        pos = tt.concatenate(
            (
                tt.sum(tt.shape_padright(self.a_star) * pos,
                       axis=0,
                       keepdims=True),
                tt.shape_padright(self.a_planet) * pos,
            ),
            axis=0,
        )
        vel = tt.stack((vx, vy, vz), axis=-1)
        vel = tt.concatenate(
            (
                tt.sum(
                    tt.shape_padright(self.m_planet) * vel,
                    axis=0,
                    keepdims=True,
                ),
                -tt.shape_padright(self.m_star) * vel,
            ),
            axis=0,
        )

        if parallax is not None:
            # convert r into arcseconds
            pos = pos * (parallax * au_per_R_sun)
            vel = vel * (parallax * au_per_R_sun)

        return pos, vel
Exemple #6
0
    def backward(self, y):
        y = tt.nnet.sigmoid(y)
        r1 = y[0]
        r2 = y[1]
        pl, pu = self.min_radius, self.max_radius

        b1 = (1 + pl) * (1 + (r1 - 1) / (1 - self.Ar))
        p1 = pl + r2 * self.dr

        q1 = r1 / self.Ar
        q2 = r2
        b2 = (1 + pl) + tt.sqrt(q1) * q2 * self.dr
        p2 = pu - self.dr * tt.sqrt(q1) * (1 - q2)

        pb = tt.switch(
            r1 > self.Ar,
            tt.stack((p1, b1), axis=0),
            tt.stack((p2, b2), axis=0),
        )
        return pb
Exemple #7
0
    def get_light_curve(
        self,
        orbit=None,
        r=None,
        t=None,
        texp=None,
        oversample=7,
        order=0,
        use_in_transit=None,
        light_delay=False,
    ):
        if self.num_planets is None:
            try:
                vec = orbit.period.tag.test_value
            except AttributeError:
                raise ValueError(
                    "Can't compute num_planets, please provide a value")
            num_planets = len(np.atleast_1d(vec))
        else:
            num_planets = int(self.num_planets)

        if num_planets <= 1:
            func = _wrapper(
                self.base_light_curve,
                orbit=orbit,
                r=r,
                texp=texp,
                oversample=oversample,
                order=order,
                use_in_transit=use_in_transit,
                light_delay=light_delay,
            )
            mn = orbit.t0
            mx = orbit.t0 + orbit.period
            return interp(
                0,
                tt.mod(t - orbit.t0, orbit.period) + orbit.t0,
                mn,
                mx,
                (mx - mn) / (self.num_phase + 1),
                func,
            )[:, None]

        ys = []
        for n in range(num_planets):
            func = _wrapper(
                self.base_light_curve,
                orbit=orbit,
                r=r,
                texp=texp,
                oversample=oversample,
                order=order,
                use_in_transit=use_in_transit,
                light_delay=light_delay,
            )
            mn = orbit.t0[n]
            mx = orbit.t0[n] + orbit.period[n]
            ys.append(
                interp(
                    n,
                    tt.mod(t - orbit.t0[n], orbit.period[n]) + orbit.t0[n],
                    mn,
                    mx,
                    (mx - mn) / (self.num_phase + 1),
                    func,
                ))

        return tt.stack(ys, axis=-1)
Exemple #8
0
    def __init__(self, *args, **kwargs):
        ttvs = kwargs.pop("ttvs", None)
        transit_times = kwargs.pop("transit_times", None)
        transit_inds = kwargs.pop("transit_inds", None)
        if ttvs is None and transit_times is None:
            raise ValueError("one of 'ttvs' or 'transit_times' must be "
                             "defined")
        if ttvs is not None:
            self.ttvs = [as_tensor_variable(ttv, ndim=1) for ttv in ttvs]
            if transit_inds is None:
                self.transit_inds = [
                    tt.arange(ttv.shape[0]) for ttv in self.ttvs
                ]
            else:
                self.transit_inds = [
                    tt.cast(as_tensor_variable(inds, ndim=1), "int64")
                    for inds in transit_inds
                ]

        else:
            # If transit times are given, compute the least squares period and
            # t0 based on these times.
            self.transit_times = []
            self.ttvs = []
            self.transit_inds = []
            period = []
            t0 = []
            for i, times in enumerate(transit_times):
                times = as_tensor_variable(times, ndim=1)
                if transit_inds is None:
                    inds = tt.arange(times.shape[0])
                else:
                    inds = tt.cast(as_tensor_variable(transit_inds[i]),
                                   "int64")
                self.transit_inds.append(inds)

                # A convoluted version of linear regression; don't ask
                N = times.shape[0]
                sumx = tt.sum(inds)
                sumx2 = tt.sum(inds**2)
                sumy = tt.sum(times)
                sumxy = tt.sum(inds * times)
                denom = N * sumx2 - sumx**2
                slope = (N * sumxy - sumx * sumy) / denom
                intercept = (sumx2 * sumy - sumx * sumxy) / denom
                expect = intercept + inds * slope

                period.append(slope)
                t0.append(intercept)
                self.ttvs.append(times - expect)
                self.transit_times.append(times)

            kwargs["t0"] = tt.stack(t0)

            # We'll have two different periods: one that is the mean difference
            # between transit times and one that is a parameter that sets the
            # transit shape. If a "period" parameter is not given, these will
            # be the same. Users will probably want to put a prior relating the
            # two periods if they use separate values.
            self.ttv_period = tt.stack(period)
            if "period" not in kwargs:
                if "delta_log_period" in kwargs:
                    kwargs["period"] = tt.exp(
                        tt.log(self.ttv_period) +
                        kwargs.pop("delta_log_period"))
                else:
                    kwargs["period"] = self.ttv_period

        super(TTVOrbit, self).__init__(*args, **kwargs)

        if ttvs is not None:
            self.ttv_period = self.period
            self.transit_times = [
                self.t0[i] + self.period[i] * self.transit_inds[i] + ttv
                for i, ttv in enumerate(self.ttvs)
            ]

        # Compute the full set of transit times
        self.all_transit_times = []
        for i, inds in enumerate(self.transit_inds):
            expect = self.t0[i] + self.period[i] * tt.arange(inds.max() + 1)
            self.all_transit_times.append(
                tt.set_subtensor(expect[inds], self.transit_times[i]))

        # Set up a histogram for identifying the transit offsets
        self._bin_edges = [
            tt.concatenate((
                [tts[0] - 0.5 * self.ttv_period[i]],
                0.5 * (tts[1:] + tts[:-1]),
                [tts[-1] + 0.5 * self.ttv_period[i]],
            )) for i, tts in enumerate(self.all_transit_times)
        ]
        self._bin_values = [
            tt.concatenate(([tts[0]], tts, [tts[-1]]))
            for i, tts in enumerate(self.all_transit_times)
        ]
Exemple #9
0
 def _get_model_dt(self, t):
     vals = []
     for i in range(len(self.ttvs)):
         inds = tt.extra_ops.searchsorted(self._bin_edges[i], t)
         vals.append(self._bin_values[i][inds])
     return tt.stack(vals, -1)
Exemple #10
0
 def forward(self, x):
     usum = tt.sum(x, axis=0)
     q = tt.stack([usum**2, 0.5 * x[0] / usum])
     return tt.log(q) - tt.log(1 - q)
Exemple #11
0
 def backward(self, y):
     q = tt.nnet.sigmoid(y)
     sqrtq1 = tt.sqrt(q[0])
     twoq2 = 2 * q[1]
     u = tt.stack([sqrtq1 * twoq2, sqrtq1 * (1 - twoq2)])
     return u
Exemple #12
0
def duration_to_eccentricity(func, duration, ror,
                             **kwargs):  # pragma: no cover
    num_planets = kwargs.pop("num_planets", 1)
    orbit_type = kwargs.pop("orbit_type", KeplerianOrbit)
    name = kwargs.get("name", "dur_ecc")

    inputs = _get_consistent_inputs(
        kwargs.get("a", None),
        kwargs.get("period", None),
        kwargs.get("rho_star", None),
        kwargs.get("r_star", None),
        kwargs.get("m_star", None),
        kwargs.get("rho_star_units", None),
        kwargs.get("m_planet", 0.0),
        kwargs.get("m_planet_units", None),
    )
    a, period, rho_star, r_star, m_star, m_planet = inputs
    b = kwargs.get("b", 0.0)
    s = tt.sin(kwargs["omega"])
    umax_inv = tt.switch(tt.lt(s, 0), tt.sqrt(1 - s**2), 1.0)

    const = (period * tt.shape_padright(r_star) * tt.sqrt((1 + ror)**2 - b**2))
    const /= np.pi * a

    u = duration / const

    e1 = -s * u**2 / ((s * u)**2 + 1)
    e2 = tt.sqrt((s**2 - 1) * u**2 + 1) / ((s * u)**2 + 1)

    models = []
    logjacs = []
    logprobs = []
    for args in product(*(zip("np", (-1, 1)) for _ in range(num_planets))):
        labels, signs = zip(*args)

        # Compute the eccentricity branch
        ecc = tt.stack([e1[i] + signs[i] * e2[i] for i in range(num_planets)])

        # Work out the Jacobian
        valid_ecc = tt.and_(tt.lt(ecc, 1.0), tt.ge(ecc, 0.0))
        logjac = tt.switch(
            tt.all(valid_ecc),
            tt.sum(0.5 * tt.log(1 - ecc**2) + 2 * tt.log(s * ecc + 1) -
                   tt.log(tt.abs_(s + ecc)) - tt.log(const)),
            -np.inf,
        )
        ecc = tt.switch(valid_ecc, ecc, tt.zeros_like(ecc))

        # Create a sub-model to capture this component
        with pm.Model(name="dur_ecc_" + "_".join(labels)) as model:
            pm.Deterministic("ecc", ecc)
            orbit = orbit_type(ecc=ecc, **kwargs)
            logprob = tt.sum(func(orbit))

        models.append(model)
        logjacs.append(logjac)
        logprobs.append(logprob)

    # Compute the marginalized likelihood
    logjacs = tt.stack(logjacs)
    logprobs = tt.stack(logprobs)
    logprob = tt.switch(
        tt.gt(1.0 / u, umax_inv),
        tt.sum(pm.logsumexp(logprobs + logjacs)),
        -np.inf,
    )
    pm.Potential(name + "_logp", logprob)
    pm.Deterministic(name + "_logjacs", logjacs)
    pm.Deterministic(name + "_logprobs", logprobs)

    # Loop over models and compute the marginalized values for all the
    # parameters and deterministics
    norm = tt.sum(pm.logsumexp(logjacs))
    logw = tt.switch(
        tt.gt(1.0 / u, umax_inv),
        logjacs - norm,
        -np.inf + tt.zeros_like(logjacs),
    )
    pm.Deterministic(name + "_logw", logw)
    for k in models[0].named_vars.keys():
        name = k[len(models[0].name) + 1:]
        pm.Deterministic(
            name,
            sum(
                tt.exp(logw[i]) * model.named_vars[model.name + "_" + name]
                for i, model in enumerate(models)),
        )