class DDPG(): """Reinforcement Learning agent that learns using DDPG.""" def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high # Actor (Policy) Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) # Critic (Value) Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) # Initialize target model parameters with local model parameters self.critic_target.model.set_weights( self.critic_local.model.get_weights()) self.actor_target.model.set_weights( self.actor_local.model.get_weights()) # Noise process self.exploration_mu = 0 self.exploration_theta = 0.15 self.exploration_sigma = 0.2 self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) # Replay memory self.buffer_size = 100000 self.batch_size = 64 self.memory = ReplayBuffer(self.buffer_size, self.batch_size) # Algorithm parameters self.gamma = 0.99 # discount factor self.tau = 0.01 # for soft update of target parameters self.total_reward = 0.0 self.score = 0.0 self.best_score = -np.inf def reset_episode(self): self.total_reward = 0.0 self.score = 0.0 self.noise.reset() state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done): self.total_reward += reward # Save experience / reward self.memory.add(self.last_state, action, reward, next_state, done) # Learn, if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) # Roll over last state and action self.last_state = next_state def act(self, state): """Returns actions for given state(s) as per current policy.""" state = np.reshape(state, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] return list(action + self.noise.sample()) # add some noise for exploration def learn(self, experiences): """Update policy and value parameters using given batch of experience tuples.""" # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.) self.score = self.total_reward if self.score > self.best_score: self.best_score = self.score states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape( -1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None ]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack( [e.next_state for e in experiences if e is not None]) # Get predicted next-state actions and Q values from target models # Q_targets_next = critic_target(next_state, actor_target(next_state)) actions_next = self.actor_target.model.predict_on_batch(next_states) Q_targets_next = self.critic_target.model.predict_on_batch( [next_states, actions_next]) # Compute Q targets for current states and train critic model (local) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) # Train actor model (local) action_gradients = np.reshape( self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) # custom training function # Soft-update target models self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model) def soft_update(self, local_model, target_model): """Soft update model parameters.""" local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) assert len(local_weights) == len( target_weights ), "Local and target model parameters must have the same size" new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights)
class DDPG(): """Reinforcement Learning agent that learns using DDPG.""" def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high self.action_range = self.action_high - self.action_low # Actor (Policy) Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high) # Critic (Value) Model self.critic_local = Critic(self.state_size, self.action_size) self.critic_target = Critic(self.state_size, self.action_size) # Initialize target model parameters with local model parameters self.critic_target.model.set_weights( self.critic_local.model.get_weights()) self.actor_target.model.set_weights( self.actor_local.model.get_weights()) # Noise process self.exploration_mu = 0.4 self.exploration_theta = 0.15 self.exploration_sigma = 0.2 self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) # Replay memory self.buffer_size = 100000 self.batch_size = 64 self.memory = ReplayBuffer(self.buffer_size, self.batch_size) # Algorithm parameters self.gamma = 0.995 # discount factor self.tau = 0.9 # for soft update of target parameters # Score tracker and learning parameters self.best_w = None self.best_score = -np.inf self.noise_scale = 0.1 self.w = np.random.normal( size=( self.state_size, self.action_size ), # weights for simple linear policy: state_space x action_space scale=(self.action_range / (2 * self.state_size) )) # start producing actions in a decent range # Episode variables # self.reset_episode() #load weight if existing try: self.actor_local.model.load_weights('actormodel.h5') self.actor_target.model.load_weights('actormodel.h5') self.critic_local.model.load_weights('criticmodel.h5') self.critic_target.model.load_weights('criticmodel.h5') print('Weight load successfully') except: print("Cannot find the weight") def reset_episode(self): self.total_reward = 0.0 self.count = 0 self.noise_scale = 0.1 self.noise.reset() state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done): # Save experience / reward self.memory.add(self.last_state, action, reward, next_state, done) self.total_reward += reward self.count += 1 # Learn, if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() self.learn(experiences) # Roll over last state and action self.last_state = next_state if done: self.score_update() def act(self, state): """Returns actions for given state(s) as per current policy.""" state = np.reshape(state, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] return list(action + self.noise.sample()) # add some noise for exploration def learn(self, experiences): """Update policy and value parameters using given batch of experience tuples.""" # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.) states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape( -1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None ]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack( [e.next_state for e in experiences if e is not None]) # Get predicted next-state actions and Q values from target models # Q_targets_next = critic_target(next_state, actor_target(next_state)) actions_next = self.actor_target.model.predict_on_batch(next_states) Q_targets_next = self.critic_target.model.predict_on_batch( [next_states, actions_next]) # Compute Q targets for current states and train critic model (local) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) # Train actor model (local) action_gradients = np.reshape( self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) # custom training function # Soft-update target models self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model) # print('actor weight: \n',self.critic_local.model.get_weights() ) def soft_update(self, local_model, target_model): """Soft update model parameters.""" local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) assert len(local_weights) == len( target_weights ), "Local and target model parameters must have the same size" new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights) def score_update(self): # Learn by random policy search, using a reward-based score self.score = self.total_reward / float( self.count) if self.count else 0.0 if self.score > self.best_score: self.best_score = self.score self.best_w = self.w self.noise_scale = max(0.5 * self.noise_scale, 0.01) self.actor_local.model.save_weights("actormodel.h5", overwrite=True) # with open("actormodel.json", "w") as outfile: # json.dump(self.actor_local.model.to_json(), outfile) self.critic_local.model.save_weights("criticmodel.h5", overwrite=True) # with open("criticmodel.json", "w") as outfile: # json.dump(self.critic_local.model.to_json(), outfile) else: self.w = self.best_w self.noise_scale = min(2.0 * self.noise_scale, 3.2) self.w = self.w + self.noise_scale * np.random.normal( size=self.w.shape) # equal noise in all directions
class DDPG(): """Reinforcement Learning agent that learns using DDPG. Params ====== task (Task): Instance of the Task class which reports the environment to this agent log (Log): Reference to the log utility. """ def __init__(self, task, log=None): self.task = task #Add log utility self.log = log self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high # Actor (Policy) Model self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high, self.log) self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high, self.log) # Critic (Value) Model self.critic_local = Critic(self.state_size, self.action_size, self.log) self.critic_target = Critic(self.state_size, self.action_size, self.log) # Initialize target model parameters with local model parameters self.critic_target.model.set_weights(self.critic_local.model.get_weights()) self.actor_target.model.set_weights(self.actor_local.model.get_weights()) # Noise process # @hakimka on the forums said to use mu = 0.001, theta = 0.05, sigma = 0.0015, but... self.exploration_mu = 0.001 self.exploration_theta = 0.05 self.exploration_sigma = 0.0015 self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma) # Replay memory self.buffer_size = 100000 self.batch_size = 128 self.memory = ReplayBuffer(self.buffer_size, self.batch_size, self.log) # Algorithm parameters self.gamma = 0.99 # discount factor 0.99 self.tau = 0.01 # for soft update of target parameters 0.01 # score self.total_reward = 0.0 self.count = 0 self.score = 0 self.best_score = -np.inf def reset_episode(self): self.noise.reset() state = self.task.reset() self.last_state = state self.total_reward = 0.0 self.count = 0 return state def step(self, action, reward, next_state, done): # Save experience / reward self.memory.add(self.last_state, action, reward, next_state, done) self.total_reward += reward self.count += 1 #if self.log != None: # self.log.write('DDPG.step len(self.memory)=' + str(len(self.memory)) + \ # ' total_reward=' + str(self.total_reward) + ' count=' + str(self.count)) # Learn, if enough samples are available in memory if len(self.memory) > self.batch_size: experiences = self.memory.sample() #if self.log != None: # self.log.write('DDPG.step len(self.memory) > self.batch_size' + \ # str(len(self.memory)) + '>' + str(self.batch_size)) self.learn(experiences) #print(self.critic_local.model.get_weights()[0][0]) #print(self.critic_target.model.get_weights()[0][0]) #for lay in self.critic_local.model.layers: # if lay.name == 'q_values': # print(lay.name + ': ' + str(lay.get_weights()[0][5])) # Roll over last state and action self.last_state = next_state def act(self, state): """Returns actions for given state(s) as per current policy.""" state = np.reshape(state, [-1, self.state_size]) action = self.actor_local.model.predict(state)[0] return list(action + self.noise.sample()) # add some noise for exploration def learn(self, experiences): """Update policy and value parameters using given batch of experience tuples.""" # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.) #if self.log != None: # self.log.write('DDPG.learn experiences=' + str(len(experiences))) states = np.vstack([e.state for e in experiences if e is not None]) actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape(-1, self.action_size) rewards = np.array([e.reward for e in experiences if e is not None]).astype(np.float32).reshape(-1, 1) dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack([e.next_state for e in experiences if e is not None]) # Get predicted next-state actions and Q values from target models # Q_targets_next = critic_target(next_state, actor_target(next_state)) actions_next = self.actor_target.model.predict_on_batch(next_states) #actions_next_normal = ( actions_next - self.action_low ) / self.action_high Q_targets_next = self.critic_target.model.predict_on_batch([next_states, actions_next]) #Q_targets_next = self.critic_target.model.predict_on_batch([next_states, actions_next_normal]) # Compute Q targets for current states and train critic model (local) Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones) #actions_normal = ( actions - self.action_low ) / self.action_high self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets) #self.critic_local.model.train_on_batch(x=[states, actions_normal], y=Q_targets) # Train actor model (local) action_gradients = np.reshape(self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size)) #action_gradients = np.reshape(self.critic_local.get_action_gradients([states, actions_normal, 0]), (-1, self.action_size)) self.actor_local.train_fn([states, action_gradients, 1]) # custom training function if self.log != None: self.log.write('DDPG.learn Q_targets=' + str(Q_targets)) self.log.write('DDPG.learn action_gradients=' + str(action_gradients)) # Soft-update target models self.soft_update(self.critic_local.model, self.critic_target.model) self.soft_update(self.actor_local.model, self.actor_target.model) self.score = self.total_reward / float(self.count) if self.count else 0.0 self.best_score = max(self.best_score, self.score) #if self.score > self.best_score: # self.best_score = self.score def soft_update(self, local_model, target_model): """Soft update model parameters. As opposed to a fixed Q-targets method.""" local_weights = np.array(local_model.get_weights()) target_weights = np.array(target_model.get_weights()) assert len(local_weights) == len(target_weights), "Local and target model parameters must have the same size" new_weights = self.tau * local_weights + (1 - self.tau) * target_weights target_model.set_weights(new_weights)
class DDPG(): def __init__(self, task): self.task = task self.state_size = task.state_size self.action_size = task.action_size self.action_low = task.action_low self.action_high = task.action_high #Policy Model & Value Model self.actorLocal = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.criticLocal = Critic(self.state_size, self.action_size) self.actorTarget = Actor(self.state_size, self.action_size, self.action_low, self.action_high) self.criticTarget = Critic(self.state_size, self.action_size) #Initializing target model with local model params self.criticTarget.model.set_weights( self.criticLocal.model.get_weights()) self.actorTarget.model.set_weights(self.actorLocal.model.get_weights()) #Replay Buffer self.buffer_size = 100000 self.batch_size = 64 self.memory = ReplayBuffer(self.buffer_size, self.batch_size) self.noise = OUNoise(self.action_size, 0, 0.1, 0.25) self.discountGamma = 0.9 def reset_episode(self): self.noise.reset() state = self.task.reset() self.last_state = state return state def step(self, action, reward, next_state, done): self.memory.add(self.last_state, action, reward, next_state, done) if len(self.memory) > self.batch_size: exp = self.memory.sample() self.learn(exp) self.last_state = next_state def act(self, state): state = np.reshape(state, [-1, self.state_size]) action = self.actorLocal.model.predict(state)[0] return list(action + self.noise.sample()) def learn(self, exp): """ https://docs.scipy.org/doc/numpy/reference/generated/numpy.vstack.html Vertical Stacking of arrays This took a long time to get in place :). Thanks to some other references in github too for examples. """ state = np.vstack([ex.state for ex in exp if ex is not None]) action = np.array([ex.action for ex in exp if ex is not None]).reshape(-1, self.action_size) reward = np.array([ex.reward for ex in exp if ex is not None]).reshape(-1, 1) done = np.array([ex.done for ex in exp if ex is not None]).astype(np.uint8).reshape(-1, 1) next_states = np.vstack( [ex.next_state for ex in exp if ex is not None]) actions_next = self.actorTarget.model.predict_on_batch(next_states) QTargets_next = self.criticTarget.model.predict_on_batch( [next_states, actions_next]) Q_targets = reward + self.discountGamma * QTargets_next * (1 - done) self.criticLocal.model.train_on_batch(x=[state, action], y=Q_targets) actionGradients = np.reshape( self.criticLocal.get_action_gradients([state, action, 0]), (-1, self.action_size)) self.actorLocal.train_fn([state, actionGradients, 1]) # Soft-update target models self.criticTarget.model.set_weights( 0.01 * np.array(self.criticLocal.model.get_weights()) + (1 - 0.01) * np.array(self.criticTarget.model.get_weights())) self.actorTarget.model.set_weights( 0.01 * np.array(self.actorLocal.model.get_weights()) + (1 - 0.01) * np.array(self.actorTarget.model.get_weights()))