Exemple #1
0
class Planner(object):
    def __init__(self, vehicle = None):

        self._vehicle = None
        self.global_planner = None
        self.local_planner = None
        self.resolution = 20.0
        self.route_trace = None

        if vehicle is not None:
            self.initialize(vehicle)

    def initialize(self, vehicle):
        self._vehicle = vehicle
        dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map(), self.resolution)
        self.global_planner = GlobalRoutePlanner(dao)
        self.global_planner.setup()
        self.local_planner = LocalPlanner(self._vehicle)



    def set_destination(self, location):

        start_waypoint = self._vehicle.get_world().get_map().get_waypoint(self._vehicle.get_location())
        end_waypoint = self._vehicle.get_world().get_map().get_waypoint(carla.Location(location[0], location[1], location[2]))

        self.route_trace = self.global_planner.trace_route(start_waypoint.transform.location, end_waypoint.transform.location)

        #self.route_trace.pop(0)
        #assert self.route_trace

        self.local_planner.set_global_plan(self.route_trace)

    def run_step(self):
        return self.local_planner.run_step(False)

    def view_plan(self):
        for w in self.route_trace:
            self._vehicle.get_world().debug.draw_string(w[0].transform.location, 'o', draw_shadow=False,
                                       color=carla.Color(r=255, g=0, b=0), life_time=120.0,
                                       persistent_lines=True)

    def done(self):
        return self.local_planner.done()
Exemple #2
0
class BasicAgent(Agent):
    """
    BasicAgent implements a basic agent that navigates scenes to reach a given
    target destination. This agent respects traffic lights and other vehicles.
    """
    def __init__(self, vehicle, target_speed=20):
        """

        :param vehicle: actor to apply to local planner logic onto
        """
        super(BasicAgent, self).__init__(vehicle)

        self.stopping_for_traffic_light = False
        self._proximity_threshold = 10.0  # meters
        self._state = AgentState.NAVIGATING
        args_lateral_dict = {
            'K_P': 0.75,
            'K_D': 0.001,
            'K_I': 1,
            'dt': 1.0 / 20.0
        }
        self._local_planner = LocalPlanner(self._vehicle,
                                           opt_dict={
                                               'target_speed':
                                               target_speed,
                                               'lateral_control_dict':
                                               args_lateral_dict
                                           })
        self._hop_resolution = 2.0
        self._path_seperation_hop = 2
        self._path_seperation_threshold = 0.5
        self._target_speed = target_speed
        self._grp = None
        self.drawn_lights = False
        self.is_affected_by_traffic_light = False

    def set_destination(self, location):
        """
        This method creates a list of waypoints from agent's position to destination location
        based on the route returned by the global router
        """

        start_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        end_waypoint = self._map.get_waypoint(
            carla.Location(location[0], location[1], location[2]))

        route_trace = self._trace_route(start_waypoint, end_waypoint)
        assert route_trace

        self._local_planner.set_global_plan(route_trace)

    def _trace_route(self, start_waypoint, end_waypoint):
        """
        This method sets up a global router and returns the optimal route
        from start_waypoint to end_waypoint
        """

        # Setting up global router
        if self._grp is None:
            dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map(),
                                        self._hop_resolution)
            grp = GlobalRoutePlanner(dao)
            grp.setup()
            self._grp = grp

        # Obtain route plan
        route = self._grp.trace_route(start_waypoint.transform.location,
                                      end_waypoint.transform.location)

        return route

    def run_step(self, debug=False):
        """
        Execute one step of navigation.
        :return: carla.VehicleControl
        """

        # is there an obstacle in front of us?
        hazard_detected = False

        # retrieve relevant elements for safe navigation, i.e.: traffic lights
        # and other vehicles
        actor_list = self._world.get_actors()  # type: ActorList
        vehicle_list = actor_list.filter("*vehicle*")  # type: List[Actor]
        pedestrians_list = actor_list.filter("*walker.pedestrian*")
        lights_list = actor_list.filter(
            "*traffic_light*")  # type: List[carla.TrafficLight]

        if not self.drawn_lights and debug:
            for light in lights_list:
                self._world.debug.draw_box(
                    carla.BoundingBox(
                        light.trigger_volume.location +
                        light.get_transform().location,
                        light.trigger_volume.extent * 2),
                    carla.Rotation(0, 0, 0), 0.05, carla.Color(255, 128, 0, 0),
                    0)
            self.drawn_lights = True

        # check possible obstacles
        vehicle_state, vehicle = self._is_vehicle_hazard(vehicle_list)
        if vehicle_state:
            if debug:
                print('!!! VEHICLE BLOCKING AHEAD [{}])'.format(vehicle.id))

            self._state = AgentState.BLOCKED_BY_VEHICLE
            hazard_detected = True

        # Check for pedestrians
        pedestrian_state, pedestrian = self._is_pedestrian_hazard(
            pedestrians_list)
        if pedestrian_state:
            if debug:
                print('!!! PEDESTRIAN BLOCKING AHEAD [{}])'.format(
                    pedestrian.id))

            self._state = AgentState.BLOCKED_BY_VEHICLE
            hazard_detected = True

        # check for the state of the traffic lights
        light_state, traffic_light = self._is_light_red(lights_list)
        if light_state:
            if debug:
                print('=== RED LIGHT AHEAD [{}])'.format(traffic_light.id))

            self._state = AgentState.BLOCKED_RED_LIGHT
            hazard_detected = True

        new_target_speed = self._update_target_speed(hazard_detected, debug)

        # if hazard_detected:
        #     control = self.emergency_stop()
        # else:
        #     self._state = AgentState.NAVIGATING
        #     self.braking_intial_speed = None
        #     # standard local planner behavior
        #     control = self._local_planner.run_step(debug=debug)
        #     if self.stopping_for_traffic_light:
        #         control.steer = 0.0

        self._state = AgentState.NAVIGATING
        self.braking_intial_speed = None
        # standard local planner behavior
        control = self._local_planner.run_step(debug=debug)
        if self.stopping_for_traffic_light:
            control.steer = 0.0
        # Prevent from steering randomly when stopped
        if math.fabs(get_speed(self._vehicle)) < 0.1:
            control.steer = 0

        return control

    def done(self):
        """
        Check whether the agent has reached its destination.
        :return bool
        """
        return self._local_planner.done()

    def _update_target_speed(self, hazard_detected, debug):
        if hazard_detected:
            self._set_target_speed(0)
            return 0

        MAX_PERCENTAGE_OF_SPEED_LIMIT = 0.75
        speed_limit = self._vehicle.get_speed_limit()  # km/h
        current_speed = get_speed(self._vehicle)
        new_target_speed = speed_limit * MAX_PERCENTAGE_OF_SPEED_LIMIT

        use_custom_traffic_light_speed = False
        if use_custom_traffic_light_speed:
            TRAFFIC_LIGHT_SECONDS_AWAY = 3
            METERS_TO_STOP_BEFORE_TRAFFIC_LIGHT = 8
            get_traffic_light = self._vehicle.get_traffic_light(
            )  # type: carla.TrafficLight
            nearest_traffic_light, distance = get_nearest_traffic_light(
                self._vehicle)  # type: carla.TrafficLight, float
            distance_to_light = distance
            distance -= METERS_TO_STOP_BEFORE_TRAFFIC_LIGHT

            if nearest_traffic_light is None:
                nearest_traffic_light = get_traffic_light

            # Draw debug info
            if debug and nearest_traffic_light is not None:
                self._world.debug.draw_point(
                    nearest_traffic_light.get_transform().location,
                    size=1,
                    life_time=0.1,
                    color=carla.Color(255, 15, 15))
            """
            if get_traffic_light is not None:
                print("get_traffic_light:     ", get_traffic_light.get_location() if get_traffic_light is not None else "None", " ", get_traffic_light.state if get_traffic_light is not None else "None")
    
            if nearest_traffic_light is not None:
                print("nearest_traffic_light: ",  nearest_traffic_light.get_location() if nearest_traffic_light is not None else "None", " ", nearest_traffic_light.state if nearest_traffic_light is not None else "None")
            """

            ego_vehicle_location = self._vehicle.get_location()
            ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location)

            self.is_affected_by_traffic_light = False
            self.stopping_for_traffic_light = False
            if ego_vehicle_waypoint.is_junction:
                # It is too late. Do not block the intersection! Keep going!
                pass

            # Check if we should start braking
            elif distance_to_light <= TRAFFIC_LIGHT_SECONDS_AWAY * new_target_speed / 3.6 and nearest_traffic_light is not None and nearest_traffic_light.state != carla.TrafficLightState.Green:
                self.is_affected_by_traffic_light = True
                brake_distance = current_speed / 3.6 * TRAFFIC_LIGHT_SECONDS_AWAY
                print("TL distance: ", distance_to_light,
                      ", distance (to stop): ", distance,
                      ", distance travel 4 secs: ", brake_distance)
                new_target_speed = self._target_speed
                if distance <= 0:
                    new_target_speed = 0
                    self.stopping_for_traffic_light = True
                    print("Stopping before traffic light, distance  ",
                          distance, "m")
                elif brake_distance >= distance and brake_distance != 0:
                    percent_before_light = (brake_distance -
                                            distance) / brake_distance
                    new_target_speed = speed_limit - max(
                        0, percent_before_light) * speed_limit
                    print("Slowing down before traffic light ",
                          percent_before_light * 100, "% ", new_target_speed,
                          " km/h")

        self._set_target_speed(max(0, new_target_speed))
        return new_target_speed

    def _set_target_speed(self, target_speed: int):
        """
        This function updates all the needed values required to actually set a new target speed
        """
        self._target_speed = target_speed
        self._local_planner.set_speed(target_speed)
class LearningAgent(Agent):
    """
    BasicAgent implements a basic agent that navigates scenes to reach a given
    target destination. This agent respects traffic lights and other vehicles.
    """

    def __init__(self, world):
        """
        :param vehicle: actor to apply to local planner logic onto
        """
        super(LearningAgent, self).__init__(world.player)
        self._world_obj = world
        # Learning Model
        self._model = Model()
        self._THW = None
        self._target_speed = None
        self._sin_param = None
        self._poly_param = None
        # Local plannar
        self._local_planner = LocalPlanner(world.player)
        self.update_parameters()
        # Global plannar
        self._proximity_threshold = 10.0  # meter
        self._state = AgentState.NAVIGATING
        self._hop_resolution = 0.2
        self._path_seperation_hop = 2
        self._path_seperation_threshold = 0.5
        self._grp = None  # global route planar
        # Behavior planning
        self._hazard_detected = False
        self._blocked_time = None
        self._perform_lane_change = False
        self._front_r = []
        self._left_front_r = []
        self._left_back_r = []

    # Update personalized parameters from model
    def update_parameters(self):
        self._THW = self._model.get_parameter("safe_distance")["THW"]
        self._target_speed = self._model.get_parameter("target_speed") * 3.6
        self._sin_param = self._model.get_parameter("sin_param")
        self._poly_param = self._model.get_parameter("poly_param")

        CONTROLLER_TYPE = 'PID' # options:MPC, PID, STANLEY
        args_lateral_dict = {'K_P': 1.0, 'K_I': 0.4, 'K_D': 0.01, 'control_type': CONTROLLER_TYPE}
        args_longitudinal_dict = {'K_P': 0.3, 'K_I': 0.2, 'K_D': 0.002}
        self._local_planner.init_controller(opt_dict={'target_speed': self._target_speed,
                                                      'lateral_control_dict': args_lateral_dict,
                                                      'longitudinal_control_dict': args_longitudinal_dict})

    # Start learning by collecting data
    def collect(self):
        # State for each step
        personalization_param = []

        # Time stamp
        personalization_param.extend([pygame.time.get_ticks()])

        # Collect vehicle position
        t = self._vehicle.get_transform()
        personalization_param.extend([t.location.x,
                                      t.location.y,
                                      t.location.z,
                                      t.rotation.yaw])

        # Collect vehicle velocity and speed
        v = self._vehicle.get_velocity()
        personalization_param.extend([v.x, v.y, v.z, self._get_speed()])                    

        # Collect radar information
        front_dis = 100
        front_vel = 50
        left_front_dis = 100
        left_front_vel = 50
        left_back_dis = -100
        left_back_vel = 0
        if self._front_r:
            front_dis = self._front_r[1][0]
            front_vel = self._front_r[2][0]
        if self._left_front_r:
            left_front_dis = self._left_front_r[1][0]
            left_front_vel = self._left_front_r[2][0]
        if self._left_back_r:
            left_back_dis = self._left_back_r[1][0]
            left_back_vel = self._left_back_r[2][0]
        personalization_param.extend([front_dis, left_front_dis, left_back_dis, 
                                      front_vel, left_front_vel, left_back_vel])

        self._model.collect(personalization_param)

    # End collection
    def end_collect(self):
        self._model.end_collect()

    # Train model
    def train_model(self):
        self._model.train_new_model()

    # Set global destination and get global waypoints
    def set_destination(self, location):
        """
        This method creates a list of waypoints from agent's position to destination location
        based on the route returned by the global router
        """
        start_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        end_waypoint = self._map.get_waypoint(carla.Location(location[0], location[1], location[2]))

        route_trace = self._trace_route(start_waypoint, end_waypoint)
        assert route_trace

        self._local_planner.set_global_plan(route_trace)

    # Get global waypoints
    def _trace_route(self, start_waypoint, end_waypoint):
        """
        This method sets up a global router and returns the optimal route
        from start_waypoint to end_waypoint
        """
        # Setting up global router
        if self._grp is None:
            dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map(), self._hop_resolution)
            grp = GlobalRoutePlanner(dao)
            grp.setup()
            self._grp = grp

        # Obtain route plan
        route = self._grp.trace_route(start_waypoint.transform.location, end_waypoint.transform.location)

        return route

    # Get vehicle speed
    def _get_speed(self):
        v = self._vehicle.get_velocity()
        ego_speed = math.sqrt(v.x**2 + v.y**2 + v.z**2)
        return ego_speed

    # Run step
    def run_step(self, debug=False):
        """
        Execute one step of navigation.
        :return: carla.VehicleControl
        """
        ## Update Environment ##
        # Check all the radars
        if self._world_obj.front_radar.detected:
            if abs(self._world_obj.front_radar.rel_pos[1]) < 1:
                self._front_r = [pygame.time.get_ticks(), self._world_obj.front_radar.rel_pos, 
                                                        self._world_obj.front_radar.rel_vel]
            self._world_obj.front_radar.detected = False                                        
        if self._world_obj.left_front_radar.detected:
            if self._world_obj.left_front_radar.rel_pos[1] < -1:
                self._left_front_r =[pygame.time.get_ticks(), self._world_obj.left_front_radar.rel_pos, 
                                                            self._world_obj.left_front_radar.rel_vel]
            self._world_obj.left_front_radar.detected = False
        if self._world_obj.left_back_radar.detected:
            if self._world_obj.left_back_radar.rel_pos[1] < -1:
                self._left_back_r = [pygame.time.get_ticks(), self._world_obj.left_back_radar.rel_pos, 
                                                            self._world_obj.left_back_radar.rel_vel]
            self._world_obj.left_back_radar.detected = False
        # Remove radar data if not detected again in 0.5 second
        if self._front_r and (pygame.time.get_ticks() - self._front_r[0] > 5000):
            self._front_r = []
        if self._left_front_r and (pygame.time.get_ticks() - self._left_front_r[0] > 5000):
            self._left_front_r = []
        if self._left_back_r and (pygame.time.get_ticks() - self._left_back_r[0] > 5000):
            self._left_back_r = []
        
        # Detect vehicles in front
        self._hazard_detected = False
        if self._front_r and (self._front_r[1][0] < 20.0):
            self._hazard_detected = True
        # update hazard existing time
        if self._hazard_detected:
            if self._blocked_time is None:
                self._blocked_time = pygame.time.get_ticks()
                hazard_time = 0
            else:
                hazard_time = pygame.time.get_ticks() - self._blocked_time
        else:
            self._blocked_time = None

        # Get a safe_distance
        safe_distance = self._THW * self._get_speed()

        '''                          
        # retrieve relevant elements for safe navigation, i.e.: traffic lights
        actor_list = self._world.get_actors()
        lights_list = actor_list.filter("*traffic_light*")
        # check for the state of the traffic lights
        light_state, traffic_light = self._is_light_red(lights_list)
        if light_state:
            if debug:
                print('=== RED LIGHT AHEAD [{}])'.format(traffic_light.id))
            self._state = AgentState.BLOCKED_RED_LIGHT
            self._hazard_detected = True
        '''
        #print(self._state)

        # Finite State Machine
        # 1, Navigating
        if self._state == AgentState.NAVIGATING:
            if self._hazard_detected:
                self._state = AgentState.BLOCKED_BY_VEHICLE

        # 2, Blocked by Vehicle
        elif self._state == AgentState.BLOCKED_BY_VEHICLE:
            if not self._hazard_detected:
                self._state = AgentState.NAVIGATING
            # The vehicle is driving at a certain speed
            # There is enough space
            else:
                if hazard_time > 5000 and \
                    190 > self._vehicle.get_location().x > 10 and \
                    10 > self._vehicle.get_location().y > 7:
                    self._state = AgentState.PREPARE_LANE_CHANGING

        # 4, Prepare Lane Change
        elif self._state == AgentState.PREPARE_LANE_CHANGING:
            if  not (self._front_r and self._front_r[1][0] < safe_distance) and \
                not (self._left_front_r and self._left_front_r[1][0] < safe_distance) and \
                not (self._left_back_r and self._left_back_r[1][0] > -10):
                    print(self._front_r)
                    print(self._left_front_r)
                    print(self._left_back_r)
                    self._state = AgentState.LANE_CHANGING
                    self._perform_lane_change = True

        # 5, Lane Change
        elif self._state == AgentState.LANE_CHANGING:
            if abs(self._vehicle.get_velocity().y) < 0.5 and \
               self._vehicle.get_location().y < 7.0:
                self._state = AgentState.NAVIGATING

        # 6, Emergency Brake
        emergency_distance = safe_distance *3/5
        emergency_front_speed = 1.0
        if self._front_r and (self._front_r[1][0] < emergency_distance or 
                                self._front_r[2][0] < emergency_front_speed):
            self._state = AgentState.EMERGENCY_BRAKE


        # Local Planner Behavior according to states
        if self._state == AgentState.NAVIGATING or self._state == AgentState.LANE_CHANGING:
            control = self._local_planner.run_step(debug=debug)

        elif self._state == AgentState.PREPARE_LANE_CHANGING:
            if self._left_front_r and self._left_front_r[1][0] < safe_distance or \
               self._front_r and self._front_r[1][0] < safe_distance:
                control = self._local_planner.empty_control(debug=debug)
            else:
                control = self._local_planner.run_step(debug=debug)

        elif self._state == AgentState.BLOCKED_BY_VEHICLE:
            # ACC
            front_dis = self._front_r[1][0]
            front_vel = self._front_r[2][0]
            ego_speed = self._get_speed()
            desired_speed = front_vel - (ego_speed-front_vel)/front_dis
            if ego_speed > 1:
                desired_speed += 2*(front_dis/ego_speed - self._THW)
            control = self._local_planner.run_step(debug=debug, target_speed=desired_speed*3.6)

        elif self._state == AgentState.EMERGENCY_BRAKE:
            control = self._local_planner.brake()
            if self._front_r:
                if self._front_r[1][0] >= emergency_distance and \
                    self._front_r[2][0] > emergency_front_speed:
                    self._state = AgentState.NAVIGATING

        elif self._state == AgentState.BLOCKED_RED_LIGHT:
            control = self._local_planner.empty_control(debug=debug)

        # When performing a lane change
        if self._perform_lane_change:
            # Record original destination
            destination = self._local_planner.get_global_destination()
            # Get lane change start location
            ref_location = self._world_obj.player.get_location()
            ref_yaw = self._world_obj.player.get_transform().rotation.yaw

            if self._local_planner.waypoint_buffer:
                waypoint = self._local_planner.waypoint_buffer[-1][0]
                ref_location = waypoint.transform.location
            
            wait_dist = 0.0  # need some time to plan
            ref = [ref_location.x + wait_dist, ref_location.y, ref_yaw]

            # Replace current plan with a lane change plan
            DL = self._left_front_r[1][0] if self._left_front_r else 100
            DH = self._left_back_r[1][0] if self._left_back_r else 100
            GMM_v = [[self._vehicle.get_velocity().x, self._sin_param["lat_dis"], DL, DH]]
            
            lane_changer = SinLaneChange(self._world_obj, self._sin_param, np.array(GMM_v))
            lane_change_plan = lane_changer.get_waypoints(ref)
            self._local_planner.set_local_plan(lane_change_plan)
            '''
            lane_changer = PolyLaneChange(self._world_obj, self._poly_param)
            lane_change_plan = lane_changer.get_waypoints(ref)
            self._local_planner.set_local_plan(lane_change_plan)
            '''
            # replan globally with new vehicle position after lane changing
            new_start = self._map.get_waypoint(lane_change_plan[-1][0].transform.location)
            route_trace = self._trace_route(new_start, destination)
            assert route_trace
            self._local_planner.add_global_plan(route_trace)

            self._perform_lane_change = False
            print("perform lane change")

        return control

    def done(self):
        """
        Check whether the agent has reached its destination.
        :return bool
        """
        return self._local_planner.done()
Exemple #4
0
class BasicAgent(object):
    """
    BasicAgent implements an agent that navigates the scene.
    This agent respects traffic lights and other vehicles, but ignores stop signs.
    It has several functions available to specify the route that the agent must follow,
    as well as to change its parameters in case a different driving mode is desired.
    """
    def __init__(self, vehicle, target_speed=20, opt_dict={}):
        """
        Initialization the agent paramters, the local and the global planner.

            :param vehicle: actor to apply to agent logic onto
            :param target_speed: speed (in Km/h) at which the vehicle will move
            :param opt_dict: dictionary in case some of its parameters want to be changed.
                This also applies to parameters related to the LocalPlanner.
        """
        self._vehicle = vehicle
        self._world = self._vehicle.get_world()
        self._map = self._world.get_map()
        self._last_traffic_light = None

        # Base parameters
        self._ignore_traffic_lights = False
        self._ignore_stop_signs = False
        self._ignore_vehicles = False
        self._target_speed = target_speed
        self._sampling_resolution = 2.0
        self._base_tlight_threshold = 5.0  # meters
        self._base_vehicle_threshold = 5.0  # meters
        self._max_brake = 0.5

        # Change parameters according to the dictionary
        opt_dict['target_speed'] = target_speed
        if 'ignore_traffic_lights' in opt_dict:
            self._ignore_traffic_lights = opt_dict['ignore_traffic_lights']
        if 'ignore_stop_signs' in opt_dict:
            self._ignore_stop_signs = opt_dict['ignore_stop_signs']
        if 'ignore_vehicles' in opt_dict:
            self._ignore_vehicles = opt_dict['ignore_vehicles']
        if 'sampling_resolution' in opt_dict:
            self._sampling_resolution = opt_dict['sampling_resolution']
        if 'base_tlight_threshold' in opt_dict:
            self._base_tlight_threshold = opt_dict['base_tlight_threshold']
        if 'base_vehicle_threshold' in opt_dict:
            self._base_vehicle_threshold = opt_dict['base_vehicle_threshold']
        if 'max_brake' in opt_dict:
            self._max_steering = opt_dict['max_brake']

        # Initialize the planners
        self._local_planner = LocalPlanner(self._vehicle, opt_dict=opt_dict)
        self._global_planner = GlobalRoutePlanner(self._map,
                                                  self._sampling_resolution)

    def add_emergency_stop(self, control):
        """
        Overwrites the throttle a brake values of a control to perform an emergency stop.
        The steering is kept the same to avoid going out of the lane when stopping during turns

            :param speed (carl.VehicleControl): control to be modified
        """
        control.throttle = 0.0
        control.brake = self._max_brake
        control.hand_brake = False
        return control

    def set_target_speed(self, speed):
        """
        Changes the target speed of the agent
            :param speed (float): target speed in Km/h
        """
        self._local_planner.set_speed(speed)

    def follow_speed_limits(self, value=True):
        """
        If active, the agent will dynamically change the target speed according to the speed limits

            :param value (bool): whether or not to activate this behavior
        """
        self._local_planner.follow_speed_limits(value)

    def get_local_planner(self):
        """Get method for protected member local planner"""
        return self._local_planner

    def get_global_planner(self):
        """Get method for protected member local planner"""
        return self._global_planner

    def set_destination(self, end_location, start_location=None):
        """
        This method creates a list of waypoints between a starting and ending location,
        based on the route returned by the global router, and adds it to the local planner.
        If no starting location is passed, the vehicle local planner's target location is chosen,
        which corresponds (by default), to a location about 5 meters in front of the vehicle.

            :param end_location (carla.Location): final location of the route
            :param start_location (carla.Location): starting location of the route
        """
        if not start_location:
            start_location = self._local_planner.target_waypoint.transform.location
            clean_queue = True
        else:
            start_location = self._vehicle.get_location()
            clean_queue = False

        start_waypoint = self._map.get_waypoint(start_location)
        end_waypoint = self._map.get_waypoint(end_location)

        route_trace = self.trace_route(start_waypoint, end_waypoint)
        self._local_planner.set_global_plan(route_trace,
                                            clean_queue=clean_queue)

    def set_global_plan(self,
                        plan,
                        stop_waypoint_creation=True,
                        clean_queue=True):
        """
        Adds a specific plan to the agent.

            :param plan: list of [carla.Waypoint, RoadOption] representing the route to be followed
            :param stop_waypoint_creation: stops the automatic random creation of waypoints
            :param clean_queue: resets the current agent's plan
        """
        self._local_planner.set_global_plan(
            plan,
            stop_waypoint_creation=stop_waypoint_creation,
            clean_queue=clean_queue)

    def trace_route(self, start_waypoint, end_waypoint):
        """
        Calculates the shortest route between a starting and ending waypoint.

            :param start_waypoint (carla.Waypoint): initial waypoint
            :param end_waypoint (carla.Waypoint): final waypoint
        """
        start_location = start_waypoint.transform.location
        end_location = end_waypoint.transform.location
        return self._global_planner.trace_route(start_location, end_location)

    def run_step(self):
        """Execute one step of navigation."""
        hazard_detected = False

        # Retrieve all relevant actors
        actor_list = self._world.get_actors()
        vehicle_list = actor_list.filter("*vehicle*")
        lights_list = actor_list.filter("*traffic_light*")

        vehicle_speed = get_speed(self._vehicle) / 3.6

        # Check for possible vehicle obstacles
        max_vehicle_distance = self._base_vehicle_threshold + vehicle_speed
        affected_by_vehicle, _, _ = self._vehicle_obstacle_detected(
            vehicle_list, max_vehicle_distance)
        if affected_by_vehicle:
            hazard_detected = True

        # Check if the vehicle is affected by a red traffic light
        max_tlight_distance = self._base_tlight_threshold + vehicle_speed
        affected_by_tlight, _ = self._affected_by_traffic_light(
            lights_list, max_tlight_distance)
        if affected_by_tlight:
            hazard_detected = True

        control = self._local_planner.run_step()
        if hazard_detected:
            control = self.add_emergency_stop(control)

        return control

    def done(self):
        """Check whether the agent has reached its destination."""
        return self._local_planner.done()

    def ignore_traffic_lights(self, active=True):
        """(De)activates the checks for traffic lights"""
        self._ignore_traffic_lights = active

    def ignore_stop_signs(self, active=True):
        """(De)activates the checks for stop signs"""
        self._ignore_stop_signs = active

    def ignore_vehicles(self, active=True):
        """(De)activates the checks for stop signs"""
        self._ignore_vehicles = active

    def _affected_by_traffic_light(self, lights_list=None, max_distance=None):
        """
        Method to check if there is a red light affecting the vehicle.

            :param lights_list (list of carla.TrafficLight): list containing TrafficLight objects.
                If None, all traffic lights in the scene are used
            :param max_distance (float): max distance for traffic lights to be considered relevant.
                If None, the base threshold value is used
        """
        if self._ignore_traffic_lights:
            return (False, None)

        if not lights_list:
            lights_list = self._world.get_actors().filter("*traffic_light*")

        if not max_distance:
            max_distance = self._base_tlight_threshold

        if self._last_traffic_light:
            if self._last_traffic_light.state != carla.TrafficLightState.Red:
                self._last_traffic_light = None
            else:
                return (True, self._last_traffic_light)

        ego_vehicle_location = self._vehicle.get_location()
        ego_vehicle_waypoint = self._map.get_waypoint(ego_vehicle_location)

        for traffic_light in lights_list:
            object_location = get_trafficlight_trigger_location(traffic_light)
            object_waypoint = self._map.get_waypoint(object_location)

            if object_waypoint.road_id != ego_vehicle_waypoint.road_id:
                continue

            ve_dir = ego_vehicle_waypoint.transform.get_forward_vector()
            wp_dir = object_waypoint.transform.get_forward_vector()
            dot_ve_wp = ve_dir.x * wp_dir.x + ve_dir.y * wp_dir.y + ve_dir.z * wp_dir.z

            if dot_ve_wp < 0:
                continue

            if traffic_light.state != carla.TrafficLightState.Red:
                continue

            if is_within_distance(object_waypoint.transform,
                                  self._vehicle.get_transform(), max_distance,
                                  [0, 90]):
                self._last_traffic_light = traffic_light
                return (True, traffic_light)

        return (False, None)

    def _vehicle_obstacle_detected(self,
                                   vehicle_list=None,
                                   max_distance=None,
                                   up_angle_th=90,
                                   low_angle_th=0,
                                   lane_offset=0):
        """
        Method to check if there is a vehicle in front of the agent blocking its path.

            :param vehicle_list (list of carla.Vehicle): list contatining vehicle objects.
                If None, all vehicle in the scene are used
            :param max_distance: max freespace to check for obstacles.
                If None, the base threshold value is used
        """
        if self._ignore_vehicles:
            return (False, None, -1)

        if not vehicle_list:
            vehicle_list = self._world.get_actors().filter("*vehicle*")

        if not max_distance:
            max_distance = self._base_vehicle_threshold

        ego_transform = self._vehicle.get_transform()
        ego_wpt = self._map.get_waypoint(self._vehicle.get_location())

        # Get the right offset
        if ego_wpt.lane_id < 0 and lane_offset != 0:
            lane_offset *= -1

        # Get the transform of the front of the ego
        ego_forward_vector = ego_transform.get_forward_vector()
        ego_extent = self._vehicle.bounding_box.extent.x
        ego_front_transform = ego_transform
        ego_front_transform.location += carla.Location(
            x=ego_extent * ego_forward_vector.x,
            y=ego_extent * ego_forward_vector.y,
        )

        for target_vehicle in vehicle_list:
            target_transform = target_vehicle.get_transform()
            target_wpt = self._map.get_waypoint(target_transform.location,
                                                lane_type=carla.LaneType.Any)

            # Simplified version for outside junctions
            if not ego_wpt.is_junction or not target_wpt.is_junction:

                if target_wpt.road_id != ego_wpt.road_id or target_wpt.lane_id != ego_wpt.lane_id + lane_offset:
                    next_wpt = self._local_planner.get_incoming_waypoint_and_direction(
                        steps=3)[0]
                    if not next_wpt:
                        continue
                    if target_wpt.road_id != next_wpt.road_id or target_wpt.lane_id != next_wpt.lane_id + lane_offset:
                        continue

                target_forward_vector = target_transform.get_forward_vector()
                target_extent = target_vehicle.bounding_box.extent.x
                target_rear_transform = target_transform
                target_rear_transform.location -= carla.Location(
                    x=target_extent * target_forward_vector.x,
                    y=target_extent * target_forward_vector.y,
                )

                if is_within_distance(target_rear_transform,
                                      ego_front_transform, max_distance,
                                      [low_angle_th, up_angle_th]):
                    return (True, target_vehicle,
                            compute_distance(target_transform.location,
                                             ego_transform.location))

            # Waypoints aren't reliable, check the proximity of the vehicle to the route
            else:
                route_bb = []
                ego_location = ego_transform.location
                extent_y = self._vehicle.bounding_box.extent.y
                r_vec = ego_transform.get_right_vector()
                p1 = ego_location + carla.Location(extent_y * r_vec.x,
                                                   extent_y * r_vec.y)
                p2 = ego_location + carla.Location(-extent_y * r_vec.x,
                                                   -extent_y * r_vec.y)
                route_bb.append([p1.x, p1.y, p1.z])
                route_bb.append([p2.x, p2.y, p2.z])

                for wp, _ in self._local_planner.get_plan():
                    if ego_location.distance(
                            wp.transform.location) > max_distance:
                        break

                    r_vec = wp.transform.get_right_vector()
                    p1 = wp.transform.location + carla.Location(
                        extent_y * r_vec.x, extent_y * r_vec.y)
                    p2 = wp.transform.location + carla.Location(
                        -extent_y * r_vec.x, -extent_y * r_vec.y)
                    route_bb.append([p1.x, p1.y, p1.z])
                    route_bb.append([p2.x, p2.y, p2.z])

                if len(route_bb) < 3:
                    # 2 points don't create a polygon, nothing to check
                    return (False, None, -1)
                ego_polygon = Polygon(route_bb)

                # Compare the two polygons
                for target_vehicle in vehicle_list:
                    target_extent = target_vehicle.bounding_box.extent.x
                    if target_vehicle.id == self._vehicle.id:
                        continue
                    if ego_location.distance(
                            target_vehicle.get_location()) > max_distance:
                        continue

                    target_bb = target_vehicle.bounding_box
                    target_vertices = target_bb.get_world_vertices(
                        target_vehicle.get_transform())
                    target_list = [[v.x, v.y, v.z] for v in target_vertices]
                    target_polygon = Polygon(target_list)

                    if ego_polygon.intersects(target_polygon):
                        return (True, target_vehicle,
                                compute_distance(target_vehicle.get_location(),
                                                 ego_location))

                return (False, None, -1)

        return (False, None, -1)
Exemple #5
0
class NavigationAssistant:
    def __init__(self, vehicle):
        self._vehicle = vehicle
        self._map = vehicle.get_world().get_map()

        args_lateral_dict = {
            'K_P': 1,
            'K_D': 0.4,
            'K_I': 0,
            'dt': 1.0/20.0}
        self._local_planner = LocalPlanner(
            self._vehicle, opt_dict={
                'target_speed' : 0,
                'lateral_control_dict' :args_lateral_dict
            }
        )
        self._hop_resolution = 2.0
        self._grp = self._initialize_global_route_planner()

    # Initializes the global route planner.
    def _initialize_global_route_planner(self):
        dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map(), self._hop_resolution)
        grp = GlobalRoutePlanner(dao)
        grp.setup()
        return grp

    # Sets vehicle's speed.
    def set_speed(self, target_speed):
        self._local_planner.set_speed(target_speed)

    # Sets vehicle's destination & computes the optimal route towards the destination.
    def set_destination(self, location):
        start_waypoint = self._map.get_waypoint( self._vehicle.get_location() )
        end_waypoint = self._map.get_waypoint(location)

        # Computes the optimal route for the starting location.
        route_trace = self._grp.trace_route(start_waypoint.transform.location, end_waypoint.transform.location)
        self._local_planner.set_global_plan(route_trace)

    # Executes one step of navigation.
    def run_step(self, hazard_detected, debug=False):
        if hazard_detected:
            control = self._emergency_stop()
        else:
            control = self._local_planner.run_step(debug=debug)

        return control

    # Checks whether the vehicle reached its destination.
    def done(self):
        return self._local_planner.done()

    # Returns a control that forces the vehicle to stop.
    @staticmethod
    def _emergency_stop():
        control = carla.VehicleControl()
        control.steer = 0.0
        control.throttle = 0.0
        control.brake = 1.0
        control.hand_brake = False

        return control
class RainDrivingAgent(Agent):
    def __init__(self, vehicle, target_speed=20):
        """

        :param vehicle: actor to apply to local planner logic onto
        """
        super(RainDrivingAgent, self).__init__(vehicle)

        self._proximity_tlight_threshold = 5.0  # meters
        self._proximity_vehicle_threshold = 10.0  # meters
        self._state = AgentState.NAVIGATING
        args_lateral_dict = {'K_P': 1, 'K_D': 0.4, 'K_I': 0, 'dt': 1.0 / 20.0}
        self._local_planner = LocalPlanner(self._vehicle,
                                           opt_dict={
                                               'target_speed':
                                               target_speed,
                                               'lateral_control_dict':
                                               args_lateral_dict
                                           })
        self._hop_resolution = 2.0
        self._path_seperation_hop = 2
        self._path_seperation_threshold = 0.5
        self._target_speed = target_speed
        self._grp = None

        # create the camera
        camera_bp = self._world.get_blueprint_library().find(
            'sensor.camera.rgb')
        camera_bp.set_attribute('image_size_x', str(1920 // 2))
        camera_bp.set_attribute('image_size_y', str(1080 // 2))
        camera_bp.set_attribute('fov', str(90))
        camera_transform = carla.Transform(carla.Location(x=-5.5, z=2.8),
                                           carla.Rotation(pitch=-15))
        self._camera = self._world.spawn_actor(camera_bp,
                                               camera_transform,
                                               attach_to=self._vehicle)
        self._camera.listen(lambda image: self._process_image(image))
        self._curr_image = None
        self._save_count = 0

    def _process_image(self, image):
        self._curr_image = image
        """
        image_array = np.frombuffer(image.raw_data, dtype=np.dtype("uint8"))
        image_array = np.reshape(image_array, (image.height, image.width, 4))
        image_array = image_array[:, :, :3]
        image_array = image_array[:, :, ::-1]
        """
        file_name = 'curr.jpg'
        image.save_to_disk(file_name)

        def parse_file(filename):
            image_string = tf.io.read_file(filename)
            image_decoded = tf.image.decode_jpeg(image_string, channels=3)
            return tf.cast(image_decoded, tf.float32) / 255.0

        whole_path = [file_name]
        filename_tensor = tf.convert_to_tensor(value=whole_path,
                                               dtype=tf.string)
        dataset = tf.data.Dataset.from_tensor_slices((filename_tensor))
        dataset = dataset.map(parse_file)
        dataset = dataset.prefetch(buffer_size=1)
        dataset = dataset.batch(batch_size=1).repeat()
        iterator = tf.compat.v1.data.make_one_shot_iterator(dataset)
        image_array = iterator.get_next()
        output = Network.inference(image_array,
                                   is_training=False,
                                   middle_layers=12)
        output = tf.clip_by_value(output, 0., 1.)
        output = output[0, :, :, :]
        config = tf.compat.v1.ConfigProto()
        config.gpu_options.allow_growth = True
        saver = tf.compat.v1.train.Saver()
        with tf.compat.v1.Session(config=config) as sess:
            with tf.device('/gpu:0'):
                saver.restore(sess, pre_trained_model_path)
                derained, ori = sess.run([output, image_array])
                derained = np.uint8(derained * 255.)
                skimage.io.imsave('curr_derained.png', derained)
                if self._save_count % 6 == 0:
                    image.save_to_disk('_out/%08d_orig' % image.frame)
                    skimage.io.imsave('_out/%08d_derained.png' % image.frame,
                                      derained)
        self._save_count += 1

    def set_destination(self, location):
        """
        This method creates a list of waypoints from agent's position to destination location
        based on the route returned by the global router
        """

        start_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        end_waypoint = self._map.get_waypoint(
            carla.Location(location[0], location[1], location[2]))

        route_trace = self._trace_route(start_waypoint, end_waypoint)

        self._local_planner.set_global_plan(route_trace)

    def _trace_route(self, start_waypoint, end_waypoint):
        """
        This method sets up a global router and returns the optimal route
        from start_waypoint to end_waypoint
        """

        # Setting up global router
        if self._grp is None:
            dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map(),
                                        self._hop_resolution)
            grp = GlobalRoutePlanner(dao)
            grp.setup()
            self._grp = grp

        # Obtain route plan
        route = self._grp.trace_route(start_waypoint.transform.location,
                                      end_waypoint.transform.location)

        return route

    def run_step(self, debug=False):
        """
        Execute one step of navigation.
        :return: carla.VehicleControl
        """

        # is there an obstacle in front of us?
        hazard_detected = False

        # retrieve relevant elements for safe navigation, i.e.: traffic lights
        # and other vehicles
        actor_list = self._world.get_actors()
        vehicle_list = actor_list.filter("*vehicle*")
        lights_list = actor_list.filter("*traffic_light*")

        # check possible obstacles
        vehicle_state, vehicle = self._is_vehicle_hazard(vehicle_list)
        if vehicle_state:
            if debug:
                print('!!! VEHICLE BLOCKING AHEAD [{}])'.format(vehicle.id))

            self._state = AgentState.BLOCKED_BY_VEHICLE
            hazard_detected = True

        # check for the state of the traffic lights
        light_state, traffic_light = self._is_light_red(lights_list)
        if light_state:
            if debug:
                print('=== RED LIGHT AHEAD [{}])'.format(traffic_light.id))

            self._state = AgentState.BLOCKED_RED_LIGHT
            hazard_detected = True

        if hazard_detected:
            control = self.emergency_stop()
        else:
            self._state = AgentState.NAVIGATING
            # standard local planner behavior
            control = self._local_planner.run_step(debug=debug)

        return control

    def done(self):
        """
        Check whether the agent has reached its destination.
        :return bool
        """
        return self._local_planner.done()
Exemple #7
0
class BasicAgent(Agent):
    """
    BasicAgent implements a basic agent that navigates scenes to reach a given
    target destination. This agent respects traffic lights and other vehicles.
    """
    def __init__(self, vehicle, target_speed=20):
        """

        :param vehicle: actor to apply to local planner logic onto
        """
        super(BasicAgent, self).__init__(vehicle)

        self._proximity_tlight_threshold = 5.0  # meters
        self._proximity_vehicle_threshold = 10.0  # meters
        self._state = AgentState.NAVIGATING
        args_lateral_dict = {'K_P': 1, 'K_D': 0.4, 'K_I': 0, 'dt': 1.0 / 20.0}
        self._local_planner = LocalPlanner(self._vehicle,
                                           opt_dict={
                                               'target_speed':
                                               target_speed,
                                               'lateral_control_dict':
                                               args_lateral_dict
                                           })
        self._hop_resolution = 2.0
        self._path_seperation_hop = 2
        self._path_seperation_threshold = 0.5
        self._target_speed = target_speed
        self._grp = None

    def set_destination(self, location):
        """
        This method creates a list of waypoints from agent's position to destination location
        based on the route returned by the global router
        """

        start_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        end_waypoint = self._map.get_waypoint(
            carla.Location(location[0], location[1], location[2]))

        route_trace = self._trace_route(start_waypoint, end_waypoint)

        self._local_planner.set_global_plan(route_trace)

    def _trace_route(self, start_waypoint, end_waypoint):
        """
        This method sets up a global router and returns the optimal route
        from start_waypoint to end_waypoint
        """

        # Setting up global router
        if self._grp is None:
            dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map(),
                                        self._hop_resolution)
            grp = GlobalRoutePlanner(dao)
            grp.setup()
            self._grp = grp

        # Obtain route plan
        route = self._grp.trace_route(start_waypoint.transform.location,
                                      end_waypoint.transform.location)

        return route

    def run_step(self, debug=False):
        """
        Execute one step of navigation.
        :return: carla.VehicleControl
        """

        # is there an obstacle in front of us?
        hazard_detected = False

        # retrieve relevant elements for safe navigation, i.e.: traffic lights
        # and other vehicles
        actor_list = self._world.get_actors()
        vehicle_list = actor_list.filter("*vehicle*")
        lights_list = actor_list.filter("*traffic_light*")

        # check possible obstacles
        vehicle_state, vehicle = self._is_vehicle_hazard(vehicle_list)
        if vehicle_state:
            if debug:
                print('!!! VEHICLE BLOCKING AHEAD [{}])'.format(vehicle.id))

            self._state = AgentState.BLOCKED_BY_VEHICLE
            hazard_detected = True

        # check for the state of the traffic lights
        light_state, traffic_light = self._is_light_red(lights_list)
        if light_state:
            if debug:
                print('=== RED LIGHT AHEAD [{}])'.format(traffic_light.id))

            self._state = AgentState.BLOCKED_RED_LIGHT
            hazard_detected = True

        if hazard_detected:
            control = self.emergency_stop()
        else:
            self._state = AgentState.NAVIGATING
            # standard local planner behavior
            control = self._local_planner.run_step(debug=debug)

        return control

    def done(self):
        """
        Check whether the agent has reached its destination.
        :return bool
        """
        return self._local_planner.done()
Exemple #8
0
class TryAgent(_Agent):
    """
    BasicAgent implements a basic agent that navigates scenes to reach a given
    target destination. This agent respects traffic lights and other vehicles.
    """
    def __init__(self, vehicle, target_speed=20):
        """

        :param vehicle: actor to apply to local planner logic onto
        """
        super(TryAgent, self).__init__(vehicle)

        self._proximity_threshold = 10.0  # meters
        self._state = _AgentState.NAVIGATING
        args_lateral_dict = {'K_P': 1, 'K_D': 0.02, 'K_I': 0, 'dt': 1.0 / 20.0}
        self._local_planner = LocalPlanner(self._vehicle,
                                           opt_dict={
                                               'target_speed':
                                               target_speed,
                                               'lateral_control_dict':
                                               args_lateral_dict
                                           })
        self._hop_resolution = 2.0
        self._path_seperation_hop = 2
        self._path_seperation_threshold = 0.5
        self._target_speed = target_speed
        self._grp = None
        self.speed = 60
        self.matrix_transform = None
        self.last = False
        self.walker = None

    def set_destination(self, location):
        """
        This method creates a list of waypoints from agent's position to destination location
        based on the route returned by the global router
        """

        start_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        end_waypoint = self._map.get_waypoint(
            carla.Location(location[0], location[1], location[2]))

        route_trace = self._trace_route(start_waypoint, end_waypoint)
        assert route_trace

        self._local_planner.set_global_plan(route_trace)

    def _trace_route(self, start_waypoint, end_waypoint):
        """
        This method sets up a global router and returns the optimal route
        from start_waypoint to end_waypoint
        """

        # Setting up global router
        if self._grp is None:
            dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map(),
                                        self._hop_resolution)
            grp = GlobalRoutePlanner(dao)
            grp.setup()
            self._grp = grp

        # Obtain route plan
        route = self._grp.trace_route(start_waypoint.transform.location,
                                      end_waypoint.transform.location)

        return route

    def run_step(self, debug=False):
        """
        Execute one step of navigation.
        :return: carla.VehicleControl
        """
        self.matrix_transform = self.get_matrix(self._vehicle.get_transform())
        # matrix = get_matrix(self._vehicle.get_transform())
        velocity = np.dot(np.array([1, 0, 0, 0]),
                          np.linalg.inv(self.matrix_transform))
        # is there an obstacle in front of us?
        hazard_detected = False

        # retrieve relevant elements for safe navigation, i.e.: traffic lights
        # and other vehicles
        actor_list = self._world.get_actors()
        vehicle_list = actor_list.filter("*vehicle*")
        lights_list = actor_list.filter("*traffic_light*")
        # pedestrian_list = actor_list.filter("*pedestrian*")
        walker_list = actor_list.filter("*walker*")
        angle = float(10 / 17)
        angles = np.array([0, 0, 0])
        for walker in walker_list:
            _distance = math.sqrt(
                (self._vehicle.get_location().x - walker.get_location().x)**2 +
                (self._vehicle.get_location().y - walker.get_location().y)**2)
            x = -(self._vehicle.get_location().x - walker.get_location().x)
            y = -(self._vehicle.get_location().y - walker.get_location().y)
            z = -(self._vehicle.get_location().z - walker.get_location().z)
            _angles = np.dot(np.array([x, y, z, 0]), self.matrix_transform)
            _angle = _angles[1] / _angles[0]
            if _distance < self.speed or _distance < 10:
                hazard_detected = True
                distance = _distance
                if abs(_angle) < abs(angle):
                    angle = _angle
                    angles = _angles
                    ped = np.dot(
                        np.linalg.inv(self.matrix_transform),
                        np.array([
                            walker.get_location().x,
                            walker.get_location().y,
                            walker.get_location().z, 1
                        ]))
                    self.walker = np.array([
                        walker.get_location().x,
                        walker.get_location().y,
                        walker.get_location().z, 1
                    ])
        """
        x = self.GlobaltoLocalVehicle(self._vehicle)[0]
        end1 = self.LocaltoGlobal(np.array([x[0] + 10 + self.speed, x[1] + (10+self.speed)*float(10/17), x[2]+2, 1]))
        end2 = self.LocaltoGlobal(np.array([x[0] + 10 + self.speed, x[1] - (10+self.speed)*float(10/17), x[2]+2, 1]))
        self._world.debug.draw_line(self._vehicle.get_location(), carla.Location(end1), life_time = 0.0001)
        self._world.debug.draw_line(self._vehicle.get_location(), carla.Location(end2), life_time = 0.0001)
        """
        # check possible obstacles
        vehicle_state, vehicle = self._is_vehicle_hazard(vehicle_list)
        if vehicle_state:
            if debug:
                print('!!! VEHICLE BLOCKING AHEAD [{}])'.format(vehicle.id))

            self._state = _AgentState.BLOCKED_BY_VEHICLE
            hazard_detected = True

        # check for the state of the traffic lights
        """
        light_state, traffic_light = self._is_light_red(lights_list)
        if light_state:
            if debug:
                print('=== RED LIGHT AHEAD [{}])'.format(traffic_light.id))

            self._state = _AgentState.BLOCKED_RED_LIGHT
            hazard_detected = True
        """
        if hazard_detected and abs(angle) < 0.5 and angles[0] > 0:
            if self.speed < 15 and ped[1] != 0:
                self.speed = self.speed
            else:
                self.speed = self.speed - self.get_break(self.speed, distance)
                if self.speed < 0:
                    self.speed = 0
            velocity = (velocity / norm(velocity)) * self.speed
            control = carla.Vector3D(velocity[0], velocity[1], velocity[2])
            self.last = hazard_detected
        else:
            if self.speed < 60:
                self.increase_speed()
            velocity = (velocity / norm(velocity)) * self.speed
            control = carla.Vector3D(velocity[0], velocity[1], velocity[2])
            self.last = hazard_detected
            self.walker = None
        """
        if hazard_detected and self.speed >= 10 and abs(angle) < 0.3 and angles[0]>0:
            # control = self.emergency_stop()
            # if self.speed > 10:
            self.speed = self.speed-self.get_break(self.speed,distance)
            if self.speed < 0:
                self.speed = 0
            velocity = (velocity/norm(velocity))*self.speed
            control = carla.Vector3D(velocity[0],velocity[1],velocity[2])

        elif hazard_detected and distance<30 and distance>10 and self.speed >= 5 and abs(angle) < 0.3 and angles[0]>0:
            # if self.speed > 5:
            control = self.emergency_stop()
            self.speed = self.speed-self.get_break(self.speed,distance)*0.1
            if self.speed < 0:
                self.speed = 0
            velocity = (velocity/norm(velocity))*self.speed
            control = carla.Vector3D(velocity[0],velocity[1],velocity[2])

        elif hazard_detected and distance<10 and self.speed > 0 and abs(angle) < 0.3 and angles[0]>0:
            return carla.Vector3D(0,0,0)

        elif hazard_detected:
            velocity = (velocity/norm(velocity))*self.speed
            control = carla.Vector3D(velocity[0],velocity[1],velocity[2])
            return control

        else:
            if self.speed<60:
                self.increase_speed()
            # self._state = _AgentState.NAVIGATING
            # standard local planner behavior
            # control = self._local_planner.run_step(debug=debug)
            velocity = (velocity/norm(velocity))*self.speed
            control = carla.Vector3D(velocity[0],velocity[1],velocity[2])
            # control = carla.Vector3D(0,0,0)
        # print(self.speed)"""
        return control

    def done(self):
        """
        Check whether the agent has reached its destination.
        :return bool
        """
        return self._local_planner.done()

    def get_location(self):
        return self._vehicle.get_location()

    def check_end(self, location):
        # matrix = self.get_matrix(self._vehicle.get_transform())
        x = np.dot(np.linalg.inv(self.matrix_transform),
                   np.array([location.x, location.y, location.z, 1]))
        if x[0] < 0:
            return True
        else:
            return False

    def get_break(self, c, distance):
        f = 2 * ((20 + c * 100 * 0.2) / distance)**2
        if c > 1:
            return f / 200
        else:
            return 0

    def increase_speed(self):
        self.speed += 1

    def check_infront():
        pass

    def get_matrix(self, transform):  #local transfer to global
        rotation = transform.rotation
        location = transform.location
        c_y = np.cos(np.radians(rotation.yaw))
        s_y = np.sin(np.radians(rotation.yaw))
        c_r = np.cos(np.radians(rotation.roll))
        s_r = np.sin(np.radians(rotation.roll))
        c_p = np.cos(np.radians(rotation.pitch))
        s_p = np.sin(np.radians(rotation.pitch))

        matrix = np.array(np.identity(4))

        matrix[0, 3] = location.x
        matrix[1, 3] = location.y
        matrix[2, 3] = location.z
        matrix[0, 0] = c_p * c_y
        matrix[0, 1] = c_y * s_p * s_r - s_y * c_r
        matrix[0, 2] = -c_y * s_p * c_r - s_y * s_r
        matrix[1, 0] = s_y * c_p
        matrix[1, 1] = s_y * s_p * s_r + c_y * c_r
        matrix[1, 2] = -s_y * s_p * c_r + c_y * s_r
        matrix[2, 0] = s_p
        matrix[2, 1] = -c_p * s_r
        matrix[2, 2] = c_p * c_r
        return matrix

    def GlobaltoLocalVehicle(self, target):
        location = np.dot(
            np.linalg.inv(self.matrix_transform),
            np.array([
                target.get_location().x,
                target.get_location().y,
                target.get_location().z, 1
            ]))
        velocity = np.dot(
            np.linalg.inv(self.matrix_transform),
            np.array([
                target.get_velocity().x,
                target.get_velocity().y,
                target.get_velocity().z, 0
            ]))
        return (location, velocity)

    def LocaltoGlobal(self, velocity):
        trans = np.dot(self.matrix_transform, velocity)
        return carla.Vector3D(trans[0], trans[1], trans[2])
class AutonomousAgent(Agent):
    """
    BasicAgent implements a basic agent that navigates scenes to reach a given
    target destination. This agent respects traffic lights and other vehicles.
    """
    def __init__(self, world):
        """
        :param vehicle: actor to apply to local planner logic onto
        """
        super(AutonomousAgent, self).__init__(world.player)
        self._world_obj = world

        self._THW = 2
        self._target_speed = None

        # Local plannar
        self._local_planner = LocalPlanner(world.player)
        self.update_parameters()
        # Global plannar
        self._proximity_threshold = 10.0  # meter   # Distance between waypoints
        self._state = AgentState.NAVIGATING
        self._hop_resolution = 0.2
        self._path_seperation_hop = 2
        self._path_seperation_threshold = 0.5
        self._grp = None  # global route planar
        # Behavior planning
        self._hazard_detected = False
        self._blocked_time = None
        self._perform_lane_change = False
        self._front_r = []
        self._left_front_r = []
        self._left_back_r = []

        # Turns positions
        self.right_positions = None
        self.left_positions = None

        # Turn flags
        self.right_turn = False
        self.left_turn = False
        self.temp_flag = True
        self.left_positions = None

    def update_parameters(self):
        self._THW = 2
        self._target_speed = 30

        CONTROLLER_TYPE = 'PID'  # options:MPC, PID, STANLEY
        args_lateral_dict = {
            'K_P': 1.0,
            'K_I': 0.4,
            'K_D': 0.01,
            'control_type': CONTROLLER_TYPE
        }
        args_longitudinal_dict = {'K_P': 0.3, 'K_I': 0.2, 'K_D': 0.002}
        self._local_planner.init_controller(
            opt_dict={
                'target_speed': self._target_speed,
                'lateral_control_dict': args_lateral_dict,
                'longitudinal_control_dict': args_longitudinal_dict
            })

    # Set global destination and get global waypoints
    def set_destination(self, location):
        """
        This method creates a list of waypoints from agent's position to destination location
        based on the route returned by the global router
        """
        start_waypoint = self._map.get_waypoint(self._vehicle.get_location())
        end_waypoint = self._map.get_waypoint(
            carla.Location(location[0], location[1], location[2]))

        route_trace = self._trace_route(start_waypoint, end_waypoint)
        assert route_trace

        self._local_planner.set_global_plan(route_trace)

    # Get global waypoints
    def _trace_route(self, start_waypoint, end_waypoint):
        """
        This method sets up a global router and returns the optimal route
        from start_waypoint to end_waypoint
        """
        # Setting up global router
        if self._grp is None:
            dao = GlobalRoutePlannerDAO(self._vehicle.get_world().get_map(),
                                        self._hop_resolution)
            grp = GlobalRoutePlanner(dao)
            grp.setup()
            self._grp = grp

        # Obtain route plan
        route = self._grp.trace_route(start_waypoint.transform.location,
                                      end_waypoint.transform.location)

        self.turn_positions_getter(route, RoadOption.RIGHT)
        self.turn_positions_getter(route, RoadOption.LEFT)

        return route

    def turn_positions_getter(self, route, state):
        """
        Returns list of all Left and right turns waypoints
        """
        count_flag = False
        temp_list = []
        list_of_turn_waypoints = []
        for i, j in route:
            if j == state:
                count_flag = True
                temp_list.append(i)
                continue

            if count_flag:
                start_waypoint = temp_list[0]
                end_waypoint = temp_list[-1]
                list_of_turn_waypoints.append((start_waypoint, end_waypoint))
                temp_list = []
                count_flag = False

        if state == RoadOption.RIGHT:
            self.right_positions = list_of_turn_waypoints

        else:
            self.left_positions = list_of_turn_waypoints

    # Get vehicle speed
    def _get_speed(self):
        v = self._vehicle.get_velocity()
        ego_speed = math.sqrt(v.x**2 + v.y**2 + v.z**2)
        return ego_speed

    # Run step
    def run_step(self, debug=False):
        """
        Execute one step of navigation.
        :return: carla.VehicleControl
        """
        ## Update Environment ##
        # Check all the radars
        try:
            if self._state == AgentState.EMERGENCY_BRAKE:
                pass
            pass
        except:
            pass
        if self._world_obj.front_radar.detected:
            if abs(self._world_obj.front_radar.rel_pos[1]) < 1:
                self._front_r = [
                    pygame.time.get_ticks(),
                    self._world_obj.front_radar.rel_pos,
                    self._world_obj.front_radar.rel_vel
                ]
            self._world_obj.front_radar.detected = False

        if self._world_obj.left_front_radar.detected:
            if self._world_obj.left_front_radar.rel_pos[1] < -1:
                self._left_front_r = [
                    pygame.time.get_ticks(),
                    self._world_obj.left_front_radar.rel_pos,
                    self._world_obj.left_front_radar.rel_vel
                ]
            self._world_obj.left_front_radar.detected = False
        if self._world_obj.left_back_radar.detected:
            if self._world_obj.left_back_radar.rel_pos[1] < -1:
                self._left_back_r = [
                    pygame.time.get_ticks(),
                    self._world_obj.left_back_radar.rel_pos,
                    self._world_obj.left_back_radar.rel_vel
                ]
            self._world_obj.left_back_radar.detected = False
        # Remove radar data if not detected again in 0.5 second
        if self._front_r and (pygame.time.get_ticks() - self._front_r[0] >
                              5000):
            self._front_r = []
        if self._left_front_r and (
                pygame.time.get_ticks() - self._left_front_r[0] > 5000):
            self._left_front_r = []
        if self._left_back_r and (
                pygame.time.get_ticks() - self._left_back_r[0] > 5000):
            self._left_back_r = []

        # Detect vehicles in front
        self._hazard_detected = False
        if self._front_r and (self._front_r[1][0] < 20.0):
            self._hazard_detected = True
        # update hazard existing time
        if self._hazard_detected:
            if self._blocked_time is None:
                self._blocked_time = pygame.time.get_ticks()
                hazard_time = 0
            else:
                hazard_time = pygame.time.get_ticks() - self._blocked_time
        else:
            self._blocked_time = None

        # Get a safe_distance
        safe_distance = self._THW * self._get_speed()

        try:
            i = self.right_positions[0][0]
            j = self.right_positions[0][1]
            loc_start = i.transform.location
            loc_start_yaw = i.transform.rotation.yaw
            loc = loc_start
            loc_end_yaw = j.transform.rotation.yaw
            loc_end = j.transform.location
            if (abs(loc.x-self._vehicle.get_location().x)+\
                abs(loc.y-self._vehicle.get_location().y)+\
                abs(loc.z-self._vehicle.get_location().z))<=10:
                self.right_turn = True
                self.temp_flag = False

        except:
            pass

        try:
            i = self.left_positions[0][0]
            j = self.left_positions[0][1]
            loc2_start = i.transform.location
            loc2_start_yaw = i.transform.rotation.yaw
            loc2 = loc2_start
            loc2_end = j.transform.location
            loc2_end_yaw = j.transform.rotation.yaw
            if (abs(loc2.x-self._vehicle.get_location().x)+\
                abs(loc2.y-self._vehicle.get_location().y)+\
                abs(loc2.z-self._vehicle.get_location().z))<=10:
                self.left_turn = True
                self.temp_flag = False

        except:
            pass

        # Finite State Machine
        # 1, Navigating
        if self._state == AgentState.NAVIGATING:
            if self._hazard_detected:
                self._state = AgentState.BLOCKED_BY_VEHICLE

        # 2, Blocked by Vehicle
        elif self._state == AgentState.BLOCKED_BY_VEHICLE:
            if not self._hazard_detected:
                self._state = AgentState.NAVIGATING
            # The vehicle is driving at a certain speed
            # There is enough space
            else:
                if hazard_time > 5000 and \
                    190 > self._vehicle.get_location().x > 10 and \
                    10 > self._vehicle.get_location().y > 7:
                    self._state = AgentState.PREPARE_LANE_CHANGING

        # 4, Prepare Lane Change
        elif self._state == AgentState.PREPARE_LANE_CHANGING:
            if  not (self._front_r and self._front_r[1][0] < safe_distance) and \
                not (self._left_front_r and self._left_front_r[1][0] < safe_distance) and \
                not (self._left_back_r and self._left_back_r[1][0] > -10):
                self._state = AgentState.LANE_CHANGING
                self._perform_lane_change = True

        # 5, Lane Change
        elif self._state == AgentState.LANE_CHANGING:
            if abs(self._vehicle.get_velocity().y) < 0.5 and \
               self._vehicle.get_location().y < 7.0:
                self._state = AgentState.NAVIGATING

        # 6, Emergency Brake
        emergency_distance = safe_distance * 3 / 5
        emergency_front_speed = 1.0
        if self._front_r and (self._front_r[1][0] < emergency_distance
                              or self._front_r[2][0] < emergency_front_speed):
            self._state = AgentState.EMERGENCY_BRAKE

        # Local Planner Behavior according to states
        if self._state == AgentState.NAVIGATING or self._state == AgentState.LANE_CHANGING:
            control = self._local_planner.run_step(debug=debug)

        elif self._state == AgentState.PREPARE_LANE_CHANGING:
            if self._left_front_r and self._left_front_r[1][0] < safe_distance or \
               self._front_r and self._front_r[1][0] < safe_distance:
                control = self._local_planner.empty_control(debug=debug)
            else:
                control = self._local_planner.run_step(debug=debug)

        elif self._state == AgentState.BLOCKED_BY_VEHICLE:
            # ACC
            front_dis = self._front_r[1][0]
            front_vel = self._front_r[2][0]
            ego_speed = self._get_speed()
            desired_speed = front_vel - (ego_speed - front_vel) / front_dis
            if ego_speed > 1:
                desired_speed += 2 * (front_dis / ego_speed - self._THW)
            control = self._local_planner.run_step(debug=debug,
                                                   target_speed=desired_speed *
                                                   3.6)

        elif self._state == AgentState.EMERGENCY_BRAKE:
            control = self._local_planner.brake()
            if self._front_r:
                if self._front_r[1][0] >= emergency_distance and \
                    self._front_r[2][0] > emergency_front_speed:
                    self._state = AgentState.NAVIGATING

        elif self._state == AgentState.BLOCKED_RED_LIGHT:
            control = self._local_planner.empty_control(debug=debug)

        # When performing a lane change
        if self._perform_lane_change:
            # Record original destination
            destination = self._local_planner.get_global_destination()
            # Get lane change start location
            ref_location = self._world_obj.player.get_location()
            ref_yaw = self._world_obj.player.get_transform().rotation.yaw

            if self._local_planner.waypoint_buffer:
                waypoint = self._local_planner.waypoint_buffer[-1][0]
                ref_location = waypoint.transform.location

            wait_dist = 0.0  # need some time to plan
            ref = [ref_location.x + wait_dist, ref_location.y, ref_yaw]

            # Replace current plan with a lane change plan

            overtake = BezierOverTake(self._world_obj)
            overtake_plan = overtake.get_waypoints(ref)
            self._local_planner.set_local_plan(overtake_plan)

            # replan globally with new vehicle position after lane changing
            new_start = self._map.get_waypoint(
                overtake_plan[-1][0].transform.location)
            route_trace = self._trace_route(new_start, destination)
            assert route_trace
            self._local_planner.add_global_plan(route_trace)

            self._perform_lane_change = False
            print("overtake")

        if self.right_turn or self.left_turn:
            # Record original destination
            destination = self._local_planner.get_global_destination()
            # Get lane change start location
            ref_location = self._world_obj.player.get_location()
            ref_yaw = self._world_obj.player.get_transform().rotation.yaw

            if self._local_planner.waypoint_buffer:
                waypoint = self._local_planner.waypoint_buffer[-1][0]
                ref_location = waypoint.transform.location

            if self.right_turn:

                ref1 = [loc_start.x, loc_start.y, loc_start_yaw]
                ref2 = [loc_end.x, loc_end.y, loc_end_yaw]
                turner = BezierTurn(self._world_obj, True)
                turn_plan = turner.get_waypoints(ref1, ref2)
                self.right_turn = False
                print('Right Turn')

            elif self.left_turn:
                ref1 = [loc2_start.x, loc2_start.y, loc2_start_yaw]
                ref2 = [loc2_end.x, loc2_end.y, loc2_end_yaw]
                turner = BezierTurn(self._world_obj, False)
                turn_plan = turner.get_waypoints(ref1, ref2)
                self.left_turn = False
                print('Left turn')

            self._local_planner.set_local_plan(turn_plan)
            # replan globally with new vehicle position after lane changing
            new_start = self._map.get_waypoint(
                turn_plan[-1][0].transform.location)
            route_trace = self._trace_route(new_start, destination)
            assert route_trace
            self._local_planner.add_global_plan(route_trace)

        return control

    def done(self):
        """
        Check whether the agent has reached its destination.
        :return bool
        """
        return self._local_planner.done()