Exemple #1
0
def test_Agent():
    def constant_prog(percept):
        return percept

    agent = Agent(constant_prog)
    result = agent.program(5)
    assert result == 5
Exemple #2
0
def test_TableDrivenAgent():
    random.seed(10)
    loc_A, loc_B = (0, 0), (1, 0)
    # table defining all the possible states of the agent
    table = {
        ((loc_A, 'Clean'), ): 'Right',
        ((loc_A, 'Dirty'), ): 'Suck',
        ((loc_B, 'Clean'), ): 'Left',
        ((loc_B, 'Dirty'), ): 'Suck',
        ((loc_A, 'Dirty'), (loc_A, 'Clean')): 'Right',
        ((loc_A, 'Clean'), (loc_B, 'Dirty')): 'Suck',
        ((loc_B, 'Clean'), (loc_A, 'Dirty')): 'Suck',
        ((loc_B, 'Dirty'), (loc_B, 'Clean')): 'Left',
        ((loc_A, 'Dirty'), (loc_A, 'Clean'), (loc_B, 'Dirty')): 'Suck',
        ((loc_B, 'Dirty'), (loc_B, 'Clean'), (loc_A, 'Dirty')): 'Suck'
    }

    # create an program and then an object of the TableDrivenAgent
    program = TableDrivenAgentProgram(table)
    agent = Agent(program)
    # create an object of TrivialVacuumEnvironment
    environment = TrivialVacuumEnvironment()
    # initializing some environment status
    environment.status = {loc_A: 'Dirty', loc_B: 'Dirty'}
    # add agent to the environment
    environment.add_thing(agent, location=(1, 0))
    # run the environment by single step everytime to check how environment evolves using TableDrivenAgentProgram
    environment.run(steps=1)
    assert environment.status == {(1, 0): 'Clean', (0, 0): 'Dirty'}

    environment.run(steps=1)
    assert environment.status == {(1, 0): 'Clean', (0, 0): 'Dirty'}

    environment.run(steps=1)
    assert environment.status == {(1, 0): 'Clean', (0, 0): 'Clean'}
Exemple #3
0
def test_ModelBasedReflexAgentProgram():
    class Rule:
        def __init__(self, state, action):
            self.__state = state
            self.action = action

        def matches(self, state):
            return self.__state == state

    loc_A = (0, 0)
    loc_B = (1, 0)

    # create rules for a two-state Vacuum Environment
    rules = [
        Rule((loc_A, "Dirty"), "Suck"),
        Rule((loc_A, "Clean"), "Right"),
        Rule((loc_B, "Dirty"), "Suck"),
        Rule((loc_B, "Clean"), "Left")
    ]

    def update_state(state, action, percept, transition_model, sensor_model):
        return percept

    # create a program and then an object of the ModelBasedReflexAgentProgram class
    program = ModelBasedReflexAgentProgram(rules, update_state, None, None)
    agent = Agent(program)
    # create an object of TrivialVacuumEnvironment
    environment = TrivialVacuumEnvironment()
    # add agent to the environment
    environment.add_thing(agent)
    # run the environment
    environment.run()
    # check final status of the environment
    assert environment.status == {(1, 0): 'Clean', (0, 0): 'Clean'}
Exemple #4
0
def test_SimpleReflexAgentProgram():
    class Rule:
        def __init__(self, state, action):
            self.__state = state
            self.action = action

        def matches(self, state):
            return self.__state == state

    loc_A = (0, 0)
    loc_B = (1, 0)

    # create rules for a two state Vacuum Environment
    rules = [
        Rule((loc_A, "Dirty"), "Suck"),
        Rule((loc_A, "Clean"), "Right"),
        Rule((loc_B, "Dirty"), "Suck"),
        Rule((loc_B, "Clean"), "Left")
    ]

    def interpret_input(state):
        return state

    # create a program and then an object of the SimpleReflexAgentProgram
    program = SimpleReflexAgentProgram(rules, interpret_input)
    agent = Agent(program)
    # create an object of TrivialVacuumEnvironment
    environment = TrivialVacuumEnvironment()
    # add agent to the environment
    environment.add_thing(agent)
    # run the environment
    environment.run()
    # check final status of the environment
    assert environment.status == {(1, 0): 'Clean', (0, 0): 'Clean'}
Exemple #5
0
def test_RandomAgentProgram():
    # create a list of all the actions a Vacuum cleaner can perform
    list = ['Right', 'Left', 'Suck', 'NoOp']
    # create a program and then an object of the RandomAgentProgram
    program = RandomAgentProgram(list)

    agent = Agent(program)
    # create an object of TrivialVacuumEnvironment
    environment = TrivialVacuumEnvironment()
    # add agent to the environment
    environment.add_thing(agent)
    # run the environment
    environment.run()
    # check final status of the environment
    assert environment.status == {(1, 0): 'Clean', (0, 0): 'Clean'}