def extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates, diagonal_dominance=False, keep=True): """Service routine to implement the strength of connection, aggregation, tentative prolongation construction, and prolongation smoothing. Called by smoothed_aggregation_solver. """ def unpack_arg(v): if isinstance(v, tuple): return v[0], v[1] else: return v, {} A = levels[-1].A B = levels[-1].B if A.symmetry == "nonsymmetric": AH = A.H.asformat(A.format) BH = levels[-1].BH ## # Compute the strength-of-connection matrix C, where larger # C[i,j] denote stronger couplings between i and j. fn, kwargs = unpack_arg(strength[len(levels) - 1]) if fn == 'symmetric': C = symmetric_strength_of_connection(A, **kwargs) elif fn == 'classical': C = classical_strength_of_connection(A, **kwargs) elif fn == 'distance': C = distance_strength_of_connection(A, **kwargs) elif (fn == 'ode') or (fn == 'evolution'): if 'B' in kwargs: C = evolution_strength_of_connection(A, **kwargs) else: C = evolution_strength_of_connection(A, B, **kwargs) elif fn == 'energy_based': C = energy_based_strength_of_connection(A, **kwargs) elif fn == 'predefined': C = kwargs['C'].tocsr() elif fn == 'algebraic_distance': C = algebraic_distance(A, **kwargs) elif fn is None: C = A.tocsr() else: raise ValueError('unrecognized strength of connection method: %s' % str(fn)) ## # Avoid coarsening diagonally dominant rows flag, kwargs = unpack_arg(diagonal_dominance) if flag: C = eliminate_diag_dom_nodes(A, C, **kwargs) ## # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A). # AggOp is a boolean matrix, where the sparsity pattern for the k-th column # denotes the fine-grid nodes agglomerated into k-th coarse-grid node. fn, kwargs = unpack_arg(aggregate[len(levels) - 1]) if fn == 'standard': AggOp = standard_aggregation(C, **kwargs)[0] elif fn == 'naive': AggOp = naive_aggregation(C, **kwargs)[0] elif fn == 'lloyd': AggOp = lloyd_aggregation(C, **kwargs)[0] elif fn == 'predefined': AggOp = kwargs['AggOp'].tocsr() else: raise ValueError('unrecognized aggregation method %s' % str(fn)) ## # Improve near nullspace candidates by relaxing on A B = 0 fn, kwargs = unpack_arg(improve_candidates[len(levels) - 1]) if fn is not None: b = np.zeros((A.shape[0], 1), dtype=A.dtype) B = relaxation_as_linear_operator((fn, kwargs), A, b) * B levels[-1].B = B if A.symmetry == "nonsymmetric": BH = relaxation_as_linear_operator((fn, kwargs), AH, b) * BH levels[-1].BH = BH ## # Compute the tentative prolongator, T, which is a tentative interpolation # matrix from the coarse-grid to the fine-grid. T exactly interpolates # B_fine = T B_coarse. T, B = fit_candidates(AggOp, B) if A.symmetry == "nonsymmetric": TH, BH = fit_candidates(AggOp, BH) ## # Smooth the tentative prolongator, so that it's accuracy is greatly # improved for algebraically smooth error. fn, kwargs = unpack_arg(smooth[len(levels) - 1]) if fn == 'jacobi': P = jacobi_prolongation_smoother(A, T, C, B, **kwargs) elif fn == 'richardson': P = richardson_prolongation_smoother(A, T, **kwargs) elif fn == 'energy': P = energy_prolongation_smoother(A, T, C, B, None, (False, {}), **kwargs) elif fn is None: P = T else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) ## # Compute the restriction matrix, R, which interpolates from the fine-grid # to the coarse-grid. If A is nonsymmetric, then R must be constructed # based on A.H. Otherwise R = P.H or P.T. symmetry = A.symmetry if symmetry == 'hermitian': R = P.H elif symmetry == 'symmetric': R = P.T elif symmetry == 'nonsymmetric': fn, kwargs = unpack_arg(smooth[len(levels) - 1]) if fn == 'jacobi': R = jacobi_prolongation_smoother(AH, TH, C, BH, **kwargs).H elif fn == 'richardson': R = richardson_prolongation_smoother(AH, TH, **kwargs).H elif fn == 'energy': R = energy_prolongation_smoother(AH, TH, C, BH, None, (False, {}), **kwargs) R = R.H elif fn is None: R = T.H else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) if keep: levels[-1].C = C # strength of connection matrix levels[-1].AggOp = AggOp # aggregation operator levels[-1].T = T # tentative prolongator levels[-1].P = P # smoothed prolongator levels[-1].R = R # restriction operator levels.append(multilevel_solver.level()) A = R * A * P # Galerkin operator A.symmetry = symmetry levels[-1].A = A levels[-1].B = B # right near nullspace candidates if A.symmetry == "nonsymmetric": levels[-1].BH = BH # left near nullspace candidates
def extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates, diagonal_dominance=False, keep=True): """Service routine to implement the strength of connection, aggregation, tentative prolongation construction, and prolongation smoothing. Called by smoothed_aggregation_solver. """ def unpack_arg(v): if isinstance(v, tuple): return v[0], v[1] else: return v, {} A = levels[-1].A B = levels[-1].B if A.symmetry == "nonsymmetric": AH = A.H.asformat(A.format) BH = levels[-1].BH # Compute the strength-of-connection matrix C, where larger # C[i,j] denote stronger couplings between i and j. fn, kwargs = unpack_arg(strength[len(levels)-1]) if fn == 'symmetric': C = symmetric_strength_of_connection(A, **kwargs) elif fn == 'classical': C = classical_strength_of_connection(A, **kwargs) elif fn == 'distance': C = distance_strength_of_connection(A, **kwargs) elif (fn == 'ode') or (fn == 'evolution'): if 'B' in kwargs: C = evolution_strength_of_connection(A, **kwargs) else: C = evolution_strength_of_connection(A, B, **kwargs) elif fn == 'energy_based': C = energy_based_strength_of_connection(A, **kwargs) elif fn == 'predefined': C = kwargs['C'].tocsr() elif fn == 'algebraic_distance': C = algebraic_distance(A, **kwargs) elif fn is None: C = A.tocsr() else: raise ValueError('unrecognized strength of connection method: %s' % str(fn)) # Avoid coarsening diagonally dominant rows flag, kwargs = unpack_arg(diagonal_dominance) if flag: C = eliminate_diag_dom_nodes(A, C, **kwargs) # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A). # AggOp is a boolean matrix, where the sparsity pattern for the k-th column # denotes the fine-grid nodes agglomerated into k-th coarse-grid node. fn, kwargs = unpack_arg(aggregate[len(levels)-1]) if fn == 'standard': AggOp = standard_aggregation(C, **kwargs)[0] elif fn == 'naive': AggOp = naive_aggregation(C, **kwargs)[0] elif fn == 'lloyd': AggOp = lloyd_aggregation(C, **kwargs)[0] elif fn == 'predefined': AggOp = kwargs['AggOp'].tocsr() else: raise ValueError('unrecognized aggregation method %s' % str(fn)) # Improve near nullspace candidates by relaxing on A B = 0 fn, kwargs = unpack_arg(improve_candidates[len(levels)-1]) if fn is not None: b = np.zeros((A.shape[0], 1), dtype=A.dtype) B = relaxation_as_linear_operator((fn, kwargs), A, b) * B levels[-1].B = B if A.symmetry == "nonsymmetric": BH = relaxation_as_linear_operator((fn, kwargs), AH, b) * BH levels[-1].BH = BH # Compute the tentative prolongator, T, which is a tentative interpolation # matrix from the coarse-grid to the fine-grid. T exactly interpolates # B_fine = T B_coarse. T, B = fit_candidates(AggOp, B) if A.symmetry == "nonsymmetric": TH, BH = fit_candidates(AggOp, BH) # Smooth the tentative prolongator, so that it's accuracy is greatly # improved for algebraically smooth error. fn, kwargs = unpack_arg(smooth[len(levels)-1]) if fn == 'jacobi': P = jacobi_prolongation_smoother(A, T, C, B, **kwargs) elif fn == 'richardson': P = richardson_prolongation_smoother(A, T, **kwargs) elif fn == 'energy': P = energy_prolongation_smoother(A, T, C, B, None, (False, {}), **kwargs) elif fn is None: P = T else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) # Compute the restriction matrix, R, which interpolates from the fine-grid # to the coarse-grid. If A is nonsymmetric, then R must be constructed # based on A.H. Otherwise R = P.H or P.T. symmetry = A.symmetry if symmetry == 'hermitian': R = P.H elif symmetry == 'symmetric': R = P.T elif symmetry == 'nonsymmetric': fn, kwargs = unpack_arg(smooth[len(levels)-1]) if fn == 'jacobi': R = jacobi_prolongation_smoother(AH, TH, C, BH, **kwargs).H elif fn == 'richardson': R = richardson_prolongation_smoother(AH, TH, **kwargs).H elif fn == 'energy': R = energy_prolongation_smoother(AH, TH, C, BH, None, (False, {}), **kwargs) R = R.H elif fn is None: R = T.H else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) if keep: levels[-1].C = C # strength of connection matrix levels[-1].AggOp = AggOp # aggregation operator levels[-1].T = T # tentative prolongator levels[-1].P = P # smoothed prolongator levels[-1].R = R # restriction operator levels.append(multilevel_solver.level()) A = R * A * P # Galerkin operator A.symmetry = symmetry levels[-1].A = A levels[-1].B = B # right near nullspace candidates if A.symmetry == "nonsymmetric": levels[-1].BH = BH # left near nullspace candidates
def extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates, diagonal_dominance=False, keep=True): """Service routine to implement the strength of connection, aggregation, tentative prolongation construction, and prolongation smoothing. Called by smoothed_aggregation_solver. """ def unpack_arg(v): if isinstance(v, tuple): return v[0], v[1] else: return v, {} A = levels[-1].A B = levels[-1].B if A.symmetry == "nonsymmetric": AH = A.H.asformat(A.format) BH = levels[-1].BH ## # Compute the strength-of-connection matrix C, where larger # C[i,j] denote stronger couplings between i and j. fn, kwargs = unpack_arg(strength[len(levels) - 1]) if fn == 'symmetric': C = symmetric_strength_of_connection(A, **kwargs) elif fn == 'classical': C = classical_strength_of_connection(A, **kwargs) elif fn == 'distance': C = distance_strength_of_connection(A, **kwargs) elif (fn == 'ode') or (fn == 'evolution'): if kwargs.has_key('B'): C = evolution_strength_of_connection(A, **kwargs) else: C = evolution_strength_of_connection(A, B, **kwargs) elif fn == 'energy_based': C = energy_based_strength_of_connection(A, **kwargs) elif fn == 'predefined': C = kwargs['C'].tocsr() elif fn == 'algebraic_distance': C = algebraic_distance(A, **kwargs) elif fn is None: C = A.tocsr() else: raise ValueError('unrecognized strength of connection method: %s' % str(fn)) ## # Avoid coarsening diagonally dominant rows flag, kwargs = unpack_arg(diagonal_dominance) if flag: C = eliminate_diag_dom_nodes(A, C, **kwargs) ## # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A). # AggOp is a boolean matrix, where the sparsity pattern for the k-th column # denotes the fine-grid nodes agglomerated into k-th coarse-grid node. fn, kwargs = unpack_arg(aggregate[len(levels) - 1]) if fn == 'standard': AggOp, Cnodes = standard_aggregation(C, **kwargs) elif fn == 'naive': AggOp, Cnodes = naive_aggregation(C, **kwargs) elif fn == 'lloyd': AggOp, Cnodes = lloyd_aggregation(C, **kwargs) elif fn == 'predefined': AggOp = kwargs['AggOp'].tocsr() Cnodes = kwargs['Cnodes'] else: raise ValueError('unrecognized aggregation method %s' % str(fn)) ## # Improve near nullspace candidates by relaxing on A B = 0 fn, kwargs = unpack_arg(improve_candidates[len(levels) - 1]) if fn is not None: b = numpy.zeros((A.shape[0], 1), dtype=A.dtype) B = relaxation_as_linear_operator((fn, kwargs), A, b) * B levels[-1].B = B if A.symmetry == "nonsymmetric": BH = relaxation_as_linear_operator((fn, kwargs), AH, b) * BH levels[-1].BH = BH ## # Compute the tentative prolongator, T, which is a tentative interpolation # matrix from the coarse-grid to the fine-grid. T exactly interpolates # B_fine[:,0:blocksize(A)] = T B_coarse[:,0:blocksize(A)]. T, dummy = fit_candidates(AggOp, B[:, 0:blocksize(A)]) del dummy if A.symmetry == "nonsymmetric": TH, dummyH = fit_candidates(AggOp, BH[:, 0:blocksize(A)]) del dummyH ## # Create necessary root node matrices Cpt_params = (True, get_Cpt_params(A, Cnodes, AggOp, T)) T = scale_T(T, Cpt_params[1]['P_I'], Cpt_params[1]['I_F']) if A.symmetry == "nonsymmetric": TH = scale_T(TH, Cpt_params[1]['P_I'], Cpt_params[1]['I_F']) ## # Set coarse grid near nullspace modes as injected fine grid near # null-space modes B = Cpt_params[1]['P_I'].T * levels[-1].B if A.symmetry == "nonsymmetric": BH = Cpt_params[1]['P_I'].T * levels[-1].BH ## # Smooth the tentative prolongator, so that it's accuracy is greatly improved # for algebraically smooth error. fn, kwargs = unpack_arg(smooth[len(levels) - 1]) if fn == 'energy': P = energy_prolongation_smoother(A, T, C, B, levels[-1].B, Cpt_params=Cpt_params, **kwargs) elif fn is None: P = T else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) ## # Compute the restriction matrix R, which interpolates from the fine-grid # to the coarse-grid. If A is nonsymmetric, then R must be constructed # based on A.H. Otherwise R = P.H or P.T. symmetry = A.symmetry if symmetry == 'hermitian': R = P.H elif symmetry == 'symmetric': R = P.T elif symmetry == 'nonsymmetric': fn, kwargs = unpack_arg(smooth[len(levels) - 1]) if fn == 'energy': R = energy_prolongation_smoother(AH, TH, C, BH, levels[-1].BH, Cpt_params=Cpt_params, **kwargs) R = R.H elif fn is None: R = T.H else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) if keep: levels[-1].C = C # strength of connection matrix levels[-1].AggOp = AggOp # aggregation operator levels[-1].T = T # tentative prolongator levels[-1].Fpts = Cpt_params[1]['Fpts'] # Fpts levels[-1].P_I = Cpt_params[1]['P_I'] # Injection operator levels[-1].I_F = Cpt_params[1]['I_F'] # Identity on F-pts levels[-1].I_C = Cpt_params[1]['I_C'] # Identity on C-pts levels[-1].P = P # smoothed prolongator levels[-1].R = R # restriction operator levels[-1].Cpts = Cpt_params[1]['Cpts'] # Cpts (i.e., rootnodes) levels.append(multilevel_solver.level()) A = R * A * P # Galerkin operator A.symmetry = symmetry levels[-1].A = A levels[-1].B = B # right near nullspace candidates if A.symmetry == "nonsymmetric": levels[-1].BH = BH # left near nullspace candidates
def extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates, diagonal_dominance=False, keep=True): """Service routine to implement the strength of connection, aggregation, tentative prolongation construction, and prolongation smoothing. Called by smoothed_aggregation_solver. """ def unpack_arg(v): if isinstance(v,tuple): return v[0],v[1] else: return v,{} A = levels[-1].A B = levels[-1].B if A.symmetry == "nonsymmetric": AH = A.H.asformat(A.format) BH = levels[-1].BH ## # Compute the strength-of-connection matrix C, where larger # C[i,j] denote stronger couplings between i and j. fn, kwargs = unpack_arg(strength[len(levels)-1]) if fn == 'symmetric': C = symmetric_strength_of_connection(A, **kwargs) elif fn == 'classical': C = classical_strength_of_connection(A, **kwargs) elif fn == 'distance': C = distance_strength_of_connection(A, **kwargs) elif (fn == 'ode') or (fn == 'evolution'): if kwargs.has_key('B'): C = evolution_strength_of_connection(A, **kwargs) else: C = evolution_strength_of_connection(A, B, **kwargs) elif fn == 'energy_based': C = energy_based_strength_of_connection(A, **kwargs) elif fn == 'predefined': C = kwargs['C'].tocsr() elif fn == 'algebraic_distance': C = algebraic_distance(A, **kwargs) elif fn is None: C = A.tocsr() else: raise ValueError('unrecognized strength of connection method: %s' % str(fn)) ## # Avoid coarsening diagonally dominant rows flag,kwargs = unpack_arg( diagonal_dominance ) if flag: C = eliminate_diag_dom_nodes(A, C, **kwargs) ## # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A). # AggOp is a boolean matrix, where the sparsity pattern for the k-th column # denotes the fine-grid nodes agglomerated into k-th coarse-grid node. fn, kwargs = unpack_arg(aggregate[len(levels)-1]) if fn == 'standard': AggOp,Cnodes = standard_aggregation(C, **kwargs) elif fn == 'naive': AggOp,Cnodes = naive_aggregation(C, **kwargs) elif fn == 'lloyd': AggOp,Cnodes = lloyd_aggregation(C, **kwargs) elif fn == 'predefined': AggOp = kwargs['AggOp'].tocsr() Cnodes = kwargs['Cnodes'] else: raise ValueError('unrecognized aggregation method %s' % str(fn)) ## # Improve near nullspace candidates by relaxing on A B = 0 fn, kwargs = unpack_arg( improve_candidates[len(levels)-1] ) if fn is not None: b = numpy.zeros((A.shape[0],1), dtype=A.dtype) B = relaxation_as_linear_operator((fn, kwargs), A, b) * B levels[-1].B = B if A.symmetry == "nonsymmetric": BH = relaxation_as_linear_operator((fn, kwargs), AH, b) * BH levels[-1].BH = BH ## # Compute the tentative prolongator, T, which is a tentative interpolation # matrix from the coarse-grid to the fine-grid. T exactly interpolates # B_fine[:,0:blocksize(A)] = T B_coarse[:,0:blocksize(A)]. T,dummy = fit_candidates(AggOp,B[:,0:blocksize(A)]) del dummy if A.symmetry == "nonsymmetric": TH,dummyH = fit_candidates(AggOp,BH[:,0:blocksize(A)]) del dummyH ## # Create necessary root node matrices Cpt_params = (True, get_Cpt_params(A, Cnodes, AggOp, T)) T = scale_T(T, Cpt_params[1]['P_I'], Cpt_params[1]['I_F']) if A.symmetry == "nonsymmetric": TH = scale_T(TH, Cpt_params[1]['P_I'], Cpt_params[1]['I_F']) ## # Set coarse grid near nullspace modes as injected fine grid near # null-space modes B = Cpt_params[1]['P_I'].T*levels[-1].B if A.symmetry == "nonsymmetric": BH = Cpt_params[1]['P_I'].T*levels[-1].BH ## # Smooth the tentative prolongator, so that it's accuracy is greatly improved # for algebraically smooth error. fn, kwargs = unpack_arg(smooth[len(levels)-1]) if fn == 'energy': P = energy_prolongation_smoother(A, T, C, B, levels[-1].B, Cpt_params=Cpt_params, **kwargs) elif fn is None: P = T else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) ## # Compute the restriction matrix R, which interpolates from the fine-grid # to the coarse-grid. If A is nonsymmetric, then R must be constructed # based on A.H. Otherwise R = P.H or P.T. symmetry = A.symmetry if symmetry == 'hermitian': R = P.H elif symmetry == 'symmetric': R = P.T elif symmetry == 'nonsymmetric': fn, kwargs = unpack_arg(smooth[len(levels)-1]) if fn == 'energy': R = energy_prolongation_smoother(AH, TH, C, BH, levels[-1].BH, Cpt_params=Cpt_params, **kwargs) R = R.H elif fn is None: R = T.H else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) if keep: levels[-1].C = C # strength of connection matrix levels[-1].AggOp = AggOp # aggregation operator levels[-1].T = T # tentative prolongator levels[-1].Fpts = Cpt_params[1]['Fpts'] # Fpts levels[-1].P_I = Cpt_params[1]['P_I'] # Injection operator levels[-1].I_F = Cpt_params[1]['I_F'] # Identity on F-pts levels[-1].I_C = Cpt_params[1]['I_C'] # Identity on C-pts levels[-1].P = P # smoothed prolongator levels[-1].R = R # restriction operator levels[-1].Cpts = Cpt_params[1]['Cpts'] # Cpts (i.e., rootnodes) levels.append( multilevel_solver.level() ) A = R * A * P # Galerkin operator A.symmetry = symmetry levels[-1].A = A levels[-1].B = B # right near nullspace candidates if A.symmetry == "nonsymmetric": levels[-1].BH = BH # left near nullspace candidates
def extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates, diagonal_dominance=False, keep=True, test_ind=0): """Service routine to implement the strength of connection, aggregation, tentative prolongation construction, and prolongation smoothing. Called by smoothed_aggregation_solver. """ def unpack_arg(v): if isinstance(v, tuple): return v[0], v[1] else: return v, {} A = levels[-1].A B = levels[-1].B if A.symmetry == "nonsymmetric": AH = A.H.asformat(A.format) BH = levels[-1].BH # Improve near nullspace candidates by relaxing on A B = 0 fn, kwargs = unpack_arg(improve_candidates[len(levels)-1]) if fn is not None: b = np.zeros((A.shape[0], 1), dtype=A.dtype) B = relaxation_as_linear_operator((fn, kwargs), A, b) * B levels[-1].B = B if A.symmetry == "nonsymmetric": BH = relaxation_as_linear_operator((fn, kwargs), AH, b) * BH levels[-1].BH = BH # Compute the strength-of-connection matrix C, where larger # C[i, j] denote stronger couplings between i and j. fn, kwargs = unpack_arg(strength[len(levels)-1]) if fn == 'symmetric': C = symmetric_strength_of_connection(A, **kwargs) elif fn == 'classical': C = classical_strength_of_connection(A, **kwargs) elif fn == 'distance': C = distance_strength_of_connection(A, **kwargs) elif (fn == 'ode') or (fn == 'evolution'): if 'B' in kwargs: C = evolution_strength_of_connection(A, **kwargs) else: C = evolution_strength_of_connection(A, B, **kwargs) elif fn == 'energy_based': C = energy_based_strength_of_connection(A, **kwargs) elif fn == 'predefined': C = kwargs['C'].tocsr() elif fn == 'algebraic_distance': C = algebraic_distance(A, **kwargs) elif fn is None: C = A.tocsr() else: raise ValueError('unrecognized strength of connection method: %s' % str(fn)) # Avoid coarsening diagonally dominant rows flag, kwargs = unpack_arg(diagonal_dominance) if flag: C = eliminate_diag_dom_nodes(A, C, **kwargs) # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A). # AggOp is a boolean matrix, where the sparsity pattern for the k-th column # denotes the fine-grid nodes agglomerated into k-th coarse-grid node. fn, kwargs = unpack_arg(aggregate[len(levels)-1]) if fn == 'standard': AggOp, Cnodes = standard_aggregation(C, **kwargs) elif fn == 'naive': AggOp, Cnodes = naive_aggregation(C, **kwargs) elif fn == 'lloyd': AggOp, Cnodes = lloyd_aggregation(C, **kwargs) elif fn == 'pairwise': AggOp, Cnodes = pairwise_aggregation(A, B, **kwargs) elif fn == 'predefined': AggOp = kwargs['AggOp'].tocsr() Cnodes = kwargs['Cnodes'] else: raise ValueError('unrecognized aggregation method %s' % str(fn)) # ----------------------------------------------------------------------------- # # ------------------- New ideal interpolation constructed -------------------- # # ----------------------------------------------------------------------------- # # pdb.set_trace() # splitting = CR(A) # Cpts = [i for i in range(0,AggOp.shape[0]) if splitting[i]==1] # Compute prolongation operator. if test_ind==0: T = new_ideal_interpolation(A=A, AggOp=AggOp, Cnodes=Cnodes, B=B[:, 0:blocksize(A)], SOC=C) else: T = py_ideal_interpolation(A=A, AggOp=AggOp, Cnodes=Cnodes, B=B[:, 0:blocksize(A)], SOC=C) print "\nSize of sparsity pattern - ", T.nnz # Smooth the tentative prolongator, so that it's accuracy is greatly # improved for algebraically smooth error. # fn, kwargs = unpack_arg(smooth[len(levels)-1]) # if fn == 'jacobi': # P = jacobi_prolongation_smoother(A, T, C, B, **kwargs) # elif fn == 'richardson': # P = richardson_prolongation_smoother(A, T, **kwargs) # elif fn == 'energy': # P = energy_prolongation_smoother(A, T, C, B, None, (False, {}), # **kwargs) # elif fn is None: # P = T # else: # raise ValueError('unrecognized prolongation smoother method %s' % # str(fn)) P = T # ----------------------------------------------------------------------------- # # ----------------------------------------------------------------------------- # # Compute the restriction matrix R, which interpolates from the fine-grid # to the coarse-grid. If A is nonsymmetric, then R must be constructed # based on A.H. Otherwise R = P.H or P.T. symmetry = A.symmetry if symmetry == 'hermitian': # symmetrically scale out the diagonal, include scaling in P, R A = P.H * A * P [dum, Dinv, dum] = symmetric_rescaling(A,copy=False) P = bsr_matrix(P * diags(Dinv,offsets=0,format='csr'), blocksize=A.blocksize) del dum R = P.H elif symmetry == 'symmetric': # symmetrically scale out the diagonal, include scaling in P, R A = P.T * A * P [dum, Dinv, dum] = symmetric_rescaling(A,copy=False) P = bsr_matrix(P * diags(Dinv,offsets=0,format='csr'), blocksize=A.blocksize) del dum R = P.T elif symmetry == 'nonsymmetric': raise TypeError('New ideal interpolation not implemented for non-symmetric matrix.') if keep: levels[-1].C = C # strength of connection matrix levels[-1].AggOp = AggOp # aggregation operator levels[-1].Fpts = [i for i in range(0,AggOp.shape[0]) if i not in Cnodes] levels[-1].P = P # smoothed prolongator levels[-1].R = R # restriction operator levels[-1].Cpts = Cnodes # Cpts (i.e., rootnodes) levels.append(multilevel_solver.level()) A.symmetry = symmetry levels[-1].A = A levels[-1].B = R*B # right near nullspace candidates test = A.tocsr() print "\nSize of coarse operator - ", test.nnz if A.symmetry == "nonsymmetric": levels[-1].BH = BH # left near nullspace candidates