Exemple #1
0
def predict_it(train_result, test_id, test_set):
    nn, tr, train_time = result

    predict_start = time.time()
    prediction_result = nn.predict(test_set[0])
    pred_time = time.time() - predict_start

    report = NeuralNet.score_report(test_set[1], prediction_result.predicted)
    print(
        "[{id}][{train_time:3.1f}/{pred_time:3.1f}]:{nn}:\n{report}\n".format(
            id=test_id,
            train_time=train_time,
            pred_time=pred_time,
            nn=nn,
            report=NeuralNet.format_score(report)))

    return prediction_result, report, pred_time
Exemple #2
0
    def _start_job(self, job_id):
        job = self.job_list[job_id]
        job.create_neuralnet()
        job.status = 'training:started'

        job.neuralnet.train(
            lambda neuralnet, train_data: self._train_callback(job, train_data))

        job.status = 'prediction:started'

        for test_set_id, test_set in job.test_sets.items():
            test_set_x, test_set_y = test_set
            prediction_result = job.neuralnet.predict(test_set_x)
            score = NeuralNet.score_report(
                test_set_y, prediction_result.predicted)
            self.add_to_prediction_log(job, test_set_id, score)
            # print("{0}:\n{1}\n".format(
            #     job.neuralnet, NeuralNet.format_score_report(score)))

        job.status = 'completed'

        return job
Exemple #3
0
    # plt.show(block=False)


classifier = NeuralNetWithAdam(train_x, train_y,
                               hidden_layers=(6,),
                               iteration_count=1000,
                               learning_rate=0.005,
                               minibatch_size=64,
                               epochs=3,
                               learning_rate_decay=0.2,
                               # beta1=0.8,
                               shuffle=True)

train_result = classifier.train(train_cb)
prediction = classifier.predict(test_x)
report = NeuralNet.score_report(test_y, prediction.predicted)
print("Classification report for {0}:\n{1}\n".format(
    classifier, NeuralNet.format_score(report)))


classifier = svm.SVC(gamma=0.001)
classifier.fit(train_x, train_y)
predicted = classifier.predict(test_x)
report = NeuralNet.score_report(test_y, predicted)
print("Classification report for {0}:\n{1}\n".format(
    classifier, NeuralNet.format_score(report)))


# analyse(classifier, expected, predicted)

# print("train MLp")
Exemple #4
0
    valid_x = valid_set[0]
    valid_y = valid_set[1]

    return (train_x, train_y), (test_x, test_y), (valid_x, valid_y)


(train_x, train_y), (test_x, test_y), (valid_x, valid_y) = get_datasets()


def train_callback(nn, it):
    if (it.total_iteration_index % 10 == 0):
        print("it:{it:>5}, cost:{cost:6.2f}".format(
            it=it.total_iteration_index, cost=it.cost))


nn = NeuralNetWithAdam(train_x,
                       train_y,
                       hidden_layers=(15, ),
                       iteration_count=200,
                       learning_rate=0.01,
                       minibatch_size=0,
                       epochs=1)
print("Training ...")
train_result = nn.train(train_callback)

prediction_result = nn.predict(test_x)

report = NeuralNet.score_report(test_y, prediction_result.predicted)

print("{0}:\n{1}\n".format(nn, NeuralNet.format_score(report)))