Exemple #1
0
    def test_hidden_parameter_mismatch(self):
        """Test for error if tile structure mismatches."""
        model = self.get_layer()
        state_dict = model.state_dict()

        # Create the device and the array.
        rpu_config = SingleRPUConfig(
            device=LinearStepDevice()  # different hidden structure
        )

        new_model = self.get_layer(rpu_config=rpu_config)
        if new_model.analog_tile.__class__.__name__ != model.analog_tile.__class__.__name__:
            with self.assertRaises(TileError):
                self.assertRaises(new_model.load_state_dict(state_dict))
Exemple #2
0
 def get_rpu_config(self):
     return SingleRPUConfig(
         device=LinearStepDevice(w_max_dtod=0, w_min_dtod=0))
from aihwkit.simulator.rpu_base import cuda

# Prepare the datasets (input and expected output).
x = Tensor([[0.1, 0.2, 0.4, 0.3], [0.2, 0.1, 0.1, 0.3]])
y = Tensor([[1.0, 0.5], [0.7, 0.3]])

# Define a single-layer network, using a vector device having multiple
# devices per crosspoint. Each device can be arbitrarily defined

rpu_config = UnitCellRPUConfig()
# 3 arbitrary devices per cross-point.
rpu_config.device = VectorUnitCell(
    unit_cell_devices=[
        ReferenceUnitCell(unit_cell_devices=[SoftBoundsDevice(w_max=1.0)]),
        ConstantStepDevice(),
        LinearStepDevice(w_max_dtod=0.4),
        SoftBoundsDevice()
    ])

# Only one of the devices should receive a single update.
# That is selected randomly, the effective weights is the sum of all
# weights.
rpu_config.device.update_policy = VectorUnitCellUpdatePolicy.SINGLE_RANDOM


model = AnalogLinear(4, 2, bias=True, rpu_config=rpu_config)

print(rpu_config)

# Move the model and tensors to cuda if it is available.
if cuda.is_compiled():