def test_input_lines(db_test_app, get_potential_data, potential_type, file_regression): potential = get_potential_data(potential_type) node = EmpiricalPotential(type=potential.type, structure=potential.structure, data=potential.data) file_regression.check(six.ensure_text(node.get_input_potential_lines()))
def test_input_lines( db_test_app, # pylint: disable=unused-argument get_potential_data, potential_type, file_regression, ): """Test that one can get the potential lines for a given aiida-lammps potential""" potential = get_potential_data(potential_type) node = EmpiricalPotential( potential_type=potential.type, data=potential.data, ) file_regression.check(node.get_input_lines())
def test_potential_files( db_test_app, # pylint: disable=unused-argument get_potential_data, potential_type, file_regression, ): """Test that one can read the potential content.""" potential = get_potential_data(potential_type) node = EmpiricalPotential( potential_type=potential.type, data=potential.data, ) file_regression.check(node.get_object_content('potential.pot', 'r'))
def test_init(db_test_app, get_potential_data, potential_type, data_regression): potential = get_potential_data(potential_type) node = EmpiricalPotential(type=potential.type, structure=potential.structure, data=potential.data) data_regression.check(node.attributes)
def test_init( db_test_app, # pylint: disable=unused-argument get_potential_data, potential_type, data_regression, ): """Test that the potential can be generated""" potential = get_potential_data(potential_type) node = EmpiricalPotential( potential_type=potential.type, data=potential.data, ) data_regression.check(node.attributes)
options.account = '' options.qos = '' options.resources = { 'num_machines': 1, 'num_mpiprocs_per_machine': 1, 'parallel_env': 'localmpi', 'tot_num_mpiprocs': 1 } #options.queue_name = 'iqtc04.q' options.max_wallclock_seconds = 3600 inputs.metadata.options = options # Setup code inputs.code = Code.get_from_string(codename) # setup nodes inputs.structure = structure inputs.potential = EmpiricalPotential(structure=structure, type='lennard_jones', data={'1 1': '0.01029 3.4 2.5'}) inputs.parameters = Dict(dict=parameters_opt) # run calculation result, node = run_get_node(LammpsOptimizeCalculation, **inputs) print('results:', result) print('node:', node) # submit to deamon #submit(LammpsOptimizeCalculation, **inputs)
options = AttributeDict() options.account = '' options.qos = '' options.resources = { 'num_machines': 1, 'num_mpiprocs_per_machine': 1, 'parallel_env': 'localmpi', 'tot_num_mpiprocs': 1, } # options.queue_name = 'iqtc04.q' options.max_wallclock_seconds = 3600 inputs.metadata.options = options # Setup code inputs.code = Code.get_from_string(codename) # setup nodes inputs.structure = structure inputs.potential = EmpiricalPotential(type=potential['pair_style'], data=potential['data']) inputs.parameters = Dict(dict=parameters_opt) # run calculation result, node = run_get_node(LammpsOptimizeCalculation, **inputs) print('results:', result) print('node:', node) # submit to deamon # submit(LammpsOptimizeCalculation, **inputs)
options.account = '' options.qos = '' options.resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1, 'parallel_env': 'localmpi', 'tot_num_mpiprocs': 1} #options.queue_name = 'iqtc04.q' options.max_wallclock_seconds = 3600 inputs.metadata.options = options # Setup code inputs.code = Code.get_from_string(codename) # setup nodes inputs.structure = structure #inputs.potential = Dict(dict=potential) inputs.potential = EmpiricalPotential(structure=structure, type='eam', data=eam_data) print(inputs.potential.get_potential_file()) print(inputs.potential.atom_style) print(inputs.potential.default_units) inputs.parameters = Dict(dict=parameters_opt) # run calculation result, node = run_get_node(LammpsOptimizeCalculation, **inputs) print('results:', result) print('node:', node) # submit to deamon #submit(LammpsOptimizeCalculation, **inputs)
def test_list_potentials(): assert set(EmpiricalPotential.list_types()).issuperset( ["eam", "lennard_jones", "reaxff", "tersoff"])
def test_potential_files(db_test_app, get_potential_data, potential_type, file_regression): potential = get_potential_data(potential_type) node = EmpiricalPotential(type=potential.type, data=potential.data) file_regression.check(node.get_object_content("potential.pot", "r"))
def test_load_type(): EmpiricalPotential.load_type("eam")
'num_mpiprocs_per_machine': 1, 'parallel_env': 'localmpi', 'tot_num_mpiprocs': 1 } #options.queue_name = 'iqtc04.q' options.max_wallclock_seconds = 3600 inputs.metadata.options = options # Setup code inputs.code = Code.get_from_string(codename) # setup nodes inputs.structure = structure #inputs.potential = Dict(dict=potential) inputs.potential = EmpiricalPotential(structure=structure, type='tersoff', data=tersoff_gan) inputs.parameters = Dict(dict=parameters_opt) print(inputs.potential.get_potential_file()) print(inputs.potential.atom_style) print(inputs.potential.default_units) # run calculation result, node = run_get_node(LammpsOptimizeCalculation, **inputs) print('results:', result) print('node:', node) # submit to deamon #submit(LammpsOptimizeCalculation, **inputs)
options = AttributeDict() options.account = "" options.qos = "" options.resources = { "num_machines": 1, "num_mpiprocs_per_machine": 1, "parallel_env": "localmpi", "tot_num_mpiprocs": 1, } # options.queue_name = 'iqtc04.q' options.max_wallclock_seconds = 3600 inputs.metadata.options = options # Setup code inputs.code = Code.get_from_string(codename) # setup nodes inputs.structure = structure inputs.potential = EmpiricalPotential(type=potential["pair_style"], data=potential["data"]) inputs.parameters = Dict(dict=parameters_md) # run calculation result, node = run_get_node(LammpsMDCalculation, **inputs) print("results:", result) print("node:", node) # submit to deamon # submit(LammpsOptimizeCalculation, **inputs)
def test_load_type(): """Test that an specific potential can be loaded""" EmpiricalPotential.load_type('eam')
def test_list_potentials(): """Test that all the supported potential types are recognized.""" assert set(EmpiricalPotential.list_types()).issuperset( ['eam', 'lennard_jones', 'reaxff', 'tersoff'])