Exemple #1
0
def conf_vars(overrides):
    original = {}
    original_env_vars = {}
    for (section, key), value in overrides.items():

        env = conf._env_var_name(section, key)
        if env in os.environ:
            original_env_vars[env] = os.environ.pop(env)

        if conf.has_option(section, key):
            original[(section, key)] = conf.get(section, key)
        else:
            original[(section, key)] = None
        if value is not None:
            conf.set(section, key, value)
        else:
            conf.remove_option(section, key)
    settings.configure_vars()
    try:
        yield
    finally:
        for (section, key), value in original.items():
            if value is not None:
                conf.set(section, key, value)
            else:
                conf.remove_option(section, key)
        for env, value in original_env_vars.items():
            os.environ[env] = value
        settings.configure_vars()
Exemple #2
0
def conf_vars(overrides):
    original = {}
    original_env_vars = {}
    reconfigure_vars = False
    for (section, key), value in overrides.items():

        env = conf._env_var_name(section, key)
        if env in os.environ:
            original_env_vars[env] = os.environ.pop(env)

        if conf.has_option(section, key):
            original[(section, key)] = conf.get(section, key)
        else:
            original[(section, key)] = None
        if value is not None:
            conf.set(section, key, value)
        else:
            conf.remove_option(section, key)

        if section == 'core' and key.lower().endswith('_folder'):
            reconfigure_vars = True
    if reconfigure_vars:
        settings.configure_vars()
    yield
    for (section, key), value in original.items():
        if value is not None:
            conf.set(section, key, value)
        else:
            conf.remove_option(section, key)
    for env, value in original_env_vars.items():
        os.environ[env] = value
    if reconfigure_vars:
        settings.configure_vars()
Exemple #3
0
def reinit_airflow_sql_conn():
    from airflow.settings import configure_orm, configure_vars

    from dbnd._core.configuration.dbnd_config import config as dbnd_config

    configure_vars()
    # The webservers import this file from models.py with the default settings.
    configure_orm()
    # add query handler before every execute
    # this will print query, code line and stack trace
    if dbnd_config.getboolean("log", "sqlalchemy_trace"):
        from airflow import settings as airflow_settings
        from sqlalchemy import event

        from dbnd_airflow.db_utils import trace_sqlalchemy_query

        event.listen(airflow_settings.engine, "before_cursor_execute",
                     trace_sqlalchemy_query)

    # this will print query execution time
    from airflow import settings as airflow_settings
    from sqlalchemy import event

    from dbnd_airflow.db_utils import (
        profile_after_cursor_execute,
        profile_before_cursor_execute,
    )

    event.listen(airflow_settings.engine, "before_cursor_execute",
                 profile_before_cursor_execute)
    event.listen(airflow_settings.engine, "after_cursor_execute",
                 profile_after_cursor_execute)
Exemple #4
0
def set_airflow_db(sql_alchemy_conn: str, fernet_key: str):
    with set_env(
            AIRFLOW__CORE__SQL_ALCHEMY_CONN=sql_alchemy_conn,
            AIRFLOW__CORE__FERNET_KEY=fernet_key,
    ):
        settings.configure_vars()
        settings.configure_orm()
        assert repr(settings.engine.url) == sql_alchemy_conn
        yield
    settings.configure_vars()
    settings.configure_orm()
def mock_airflow_db() -> ContextManager[AirflowDb]:
    with tempfile.TemporaryDirectory() as temp_dir:
        test_db_path = os.path.join(temp_dir, 'airflow.db')
        sql_alchemy_conn = f'sqlite:///{test_db_path}'
        with set_env(AIRFLOW__CORE__SQL_ALCHEMY_CONN=sql_alchemy_conn):
            settings.configure_vars()
            settings.configure_orm()
            assert repr(settings.engine.url) == sql_alchemy_conn
            initdb()
            yield AirflowDb(sql_alchemy_conn=sql_alchemy_conn)
    settings.configure_vars()
    settings.configure_orm()
def task_run(args, dag=None):
    """Runs a single task instance"""
    if dag:
        args.dag_id = dag.dag_id

    log = LoggingMixin().log

    # Load custom airflow config
    if args.cfg_path:
        with open(args.cfg_path, 'r') as conf_file:
            conf_dict = json.load(conf_file)

        if os.path.exists(args.cfg_path):
            os.remove(args.cfg_path)

        conf.read_dict(conf_dict, source=args.cfg_path)
        settings.configure_vars()

    # IMPORTANT, have to use the NullPool, otherwise, each "run" command may leave
    # behind multiple open sleeping connections while heartbeating, which could
    # easily exceed the database connection limit when
    # processing hundreds of simultaneous tasks.
    settings.configure_orm(disable_connection_pool=True)

    if not args.pickle and not dag:
        dag = get_dag(args)
    elif not dag:
        with db.create_session() as session:
            log.info('Loading pickle id %s', args.pickle)
            dag_pickle = session.query(DagPickle).filter(
                DagPickle.id == args.pickle).first()
            if not dag_pickle:
                raise AirflowException("Who hid the pickle!? [missing pickle]")
            dag = dag_pickle.pickle

    task = dag.get_task(task_id=args.task_id)
    ti = TaskInstance(task, args.execution_date)
    ti.refresh_from_db()

    ti.init_run_context(raw=args.raw)

    hostname = get_hostname()
    log.info("Running %s on host %s", ti, hostname)

    if args.interactive:
        _run(args, dag, ti)
    else:
        with redirect_stdout(ti.log, logging.INFO), redirect_stderr(
                ti.log, logging.WARN):
            _run(args, dag, ti)
    logging.shutdown()
Exemple #7
0
def task_run(args, dag=None):
    """Runs a single task instance"""

    # Load custom airflow config
    if args.cfg_path:
        with open(args.cfg_path, 'r') as conf_file:
            conf_dict = json.load(conf_file)

        if os.path.exists(args.cfg_path):
            os.remove(args.cfg_path)

        conf.read_dict(conf_dict, source=args.cfg_path)
        settings.configure_vars()

    # IMPORTANT, have to use the NullPool, otherwise, each "run" command may leave
    # behind multiple open sleeping connections while heartbeating, which could
    # easily exceed the database connection limit when
    # processing hundreds of simultaneous tasks.
    settings.configure_orm(disable_connection_pool=True)

    if dag and args.pickle:
        raise AirflowException(
            "You cannot use the --pickle option when using DAG.cli() method.")
    elif args.pickle:
        print(f'Loading pickle id: {args.pickle}')
        dag = get_dag_by_pickle(args.pickle)
    elif not dag:
        dag = get_dag(args.subdir, args.dag_id)
    else:
        # Use DAG from parameter
        pass

    task = dag.get_task(task_id=args.task_id)
    ti = TaskInstance(task, args.execution_date)
    ti.refresh_from_db()

    ti.init_run_context(raw=args.raw)

    hostname = get_hostname()
    print(f"Running {ti} on host {hostname}")

    if args.interactive:
        _run_task_by_selected_method(args, dag, ti)
    else:
        with redirect_stdout(StreamLogWriter(ti.log, logging.INFO)), \
                redirect_stderr(StreamLogWriter(ti.log, logging.WARN)):
            _run_task_by_selected_method(args, dag, ti)
    logging.shutdown()
def set_airflow_db(sql_alchemy_conn: Optional[str],
                   fernet_key: Optional[str]) -> ContextManager[AirflowDb]:
    env = {}
    if sql_alchemy_conn is not None:
        env['AIRFLOW__CORE__SQL_ALCHEMY_CONN'] = sql_alchemy_conn
    if fernet_key is not None:
        env['AIRFLOW__CORE__FERNET_KEY'] = fernet_key
    with set_env(**env):
        settings.configure_vars()
        settings.configure_orm()
        if sql_alchemy_conn is not None:
            assert str(
                settings.engine.url
            ) == sql_alchemy_conn, f'{settings.engine.url} != {sql_alchemy_conn}'
        yield AirflowDb(sql_alchemy_conn or settings.SQL_ALCHEMY_CONN)
    settings.configure_vars()
    settings.configure_orm()
Exemple #9
0
def task_run(args, dag=None):
    """Runs a single task instance"""

    # Load custom airflow config
    if args.cfg_path:
        with open(args.cfg_path, 'r') as conf_file:
            conf_dict = json.load(conf_file)

        if os.path.exists(args.cfg_path):
            os.remove(args.cfg_path)

        conf.read_dict(conf_dict, source=args.cfg_path)
        settings.configure_vars()

    # IMPORTANT, have to use the NullPool, otherwise, each "run" command may leave
    # behind multiple open sleeping connections while heartbeating, which could
    # easily exceed the database connection limit when
    # processing hundreds of simultaneous tasks.
    settings.configure_orm(disable_connection_pool=True)

    if dag and args.pickle:
        raise AirflowException("You cannot use the --pickle option when using DAG.cli() method.")
    elif args.pickle:
        print(f'Loading pickle id: {args.pickle}')
        dag = get_dag_by_pickle(args.pickle)
    elif not dag:
        dag = get_dag(args.subdir, args.dag_id)
    else:
        # Use DAG from parameter
        pass

    task = dag.get_task(task_id=args.task_id)
    ti = TaskInstance(task, args.execution_date)
    ti.init_run_context(raw=args.raw)

    hostname = get_hostname()

    print(f"Running {ti} on host {hostname}")

    if args.interactive:
        _run_task_by_selected_method(args, dag, ti)
    else:
        if settings.DONOT_MODIFY_HANDLERS:
            with redirect_stdout(StreamLogWriter(ti.log, logging.INFO)), \
                    redirect_stderr(StreamLogWriter(ti.log, logging.WARN)):
                _run_task_by_selected_method(args, dag, ti)
        else:
            # Get all the Handlers from 'airflow.task' logger
            # Add these handlers to the root logger so that we can get logs from
            # any custom loggers defined in the DAG
            airflow_logger_handlers = logging.getLogger('airflow.task').handlers
            root_logger = logging.getLogger()
            root_logger_handlers = root_logger.handlers

            # Remove all handlers from Root Logger to avoid duplicate logs
            for handler in root_logger_handlers:
                root_logger.removeHandler(handler)

            for handler in airflow_logger_handlers:
                root_logger.addHandler(handler)
            root_logger.setLevel(logging.getLogger('airflow.task').level)

            with redirect_stdout(StreamLogWriter(ti.log, logging.INFO)), \
                    redirect_stderr(StreamLogWriter(ti.log, logging.WARN)):
                _run_task_by_selected_method(args, dag, ti)

            # We need to restore the handlers to the loggers as celery worker process
            # can call this command multiple times,
            # so if we don't reset this then logs from next task would go to the wrong place
            for handler in airflow_logger_handlers:
                root_logger.removeHandler(handler)
            for handler in root_logger_handlers:
                root_logger.addHandler(handler)

    logging.shutdown()
def task_run(args, dag=None):
    """Run a single task instance.

    Note that there must be at least one DagRun for this to start,
    i.e. it must have been scheduled and/or triggered previously.
    Alternatively, if you just need to run it for testing then use
    "airflow tasks test ..." command instead.
    """
    # Load custom airflow config

    if args.local and args.raw:
        raise AirflowException(
            "Option --raw and --local are mutually exclusive. "
            "Please remove one option to execute the command.")

    if args.raw:
        unsupported_options = [
            o for o in RAW_TASK_UNSUPPORTED_OPTION if getattr(args, o)
        ]

        if unsupported_options:
            unsupported_raw_task_flags = ', '.join(
                f'--{o}' for o in RAW_TASK_UNSUPPORTED_OPTION)
            unsupported_flags = ', '.join(f'--{o}'
                                          for o in unsupported_options)
            raise AirflowException(
                "Option --raw does not work with some of the other options on this command. "
                "You can't use --raw option and the following options: "
                f"{unsupported_raw_task_flags}. "
                f"You provided the option {unsupported_flags}. "
                "Delete it to execute the command.")
    if dag and args.pickle:
        raise AirflowException(
            "You cannot use the --pickle option when using DAG.cli() method.")
    if args.cfg_path:
        with open(args.cfg_path) as conf_file:
            conf_dict = json.load(conf_file)

        if os.path.exists(args.cfg_path):
            os.remove(args.cfg_path)

        conf.read_dict(conf_dict, source=args.cfg_path)
        settings.configure_vars()

    settings.MASK_SECRETS_IN_LOGS = True

    # IMPORTANT, have to use the NullPool, otherwise, each "run" command may leave
    # behind multiple open sleeping connections while heartbeating, which could
    # easily exceed the database connection limit when
    # processing hundreds of simultaneous tasks.
    settings.configure_orm(disable_connection_pool=True)

    if args.pickle:
        print(f'Loading pickle id: {args.pickle}')
        dag = get_dag_by_pickle(args.pickle)
    elif not dag:
        dag = get_dag(args.subdir, args.dag_id)
    else:
        # Use DAG from parameter
        pass
    task = dag.get_task(task_id=args.task_id)
    ti = _get_ti(task, args.execution_date_or_run_id)
    ti.init_run_context(raw=args.raw)

    hostname = get_hostname()

    print(f"Running {ti} on host {hostname}")

    if args.interactive:
        _run_task_by_selected_method(args, dag, ti)
    else:
        with _capture_task_logs(ti):
            _run_task_by_selected_method(args, dag, ti)