import numpy from sklearn.model_selection import GridSearchCV from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasRegressor from pyDOE import * from sklearn.model_selection import PredefinedSplit import time from src import sampling from functions import functions start = time.time() import airfoil.utility as u test_dir = r'./test_DIR/' u.make_sure_path_exists(test_dir) funObj = functions.Airfoil(5, 0.2, 5e005, test_dir, False) def create_model(layers=2, units=40, eps=1e-8, lr=1e-5): model = Sequential() dim = 6 ## making the model graph, Stacking layers is done by .add(): model.add(Dense(units=units, input_dim=dim, activation='sigmoid')) for i in range(layers - 1): model.add(Dense(units=units, activation='sigmoid')) model.add(Dense(units=1)) # optmiser = keras.optimizers.RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) optimizer = keras.optimizers.Adam(lr=lr,
except OSError as exception: if exception.errno != errno.EEXIST: raise make_sure_path_exists(path) for i in range(1): # how many times end to end generalisation is done i = 0 series = 0.2 + np.random.rand(5) * 0.2 #2=how many in a series of contexts np.savez(path + 'series_{}.npz'.format(i), series) start = time.time() logdir = path + r's{}/context{}/'.format(i, 0) u.make_sure_path_exists(logdir) funObj = f.Airfoil(3, series[0], 5e005, logdir, graphics) print('Starting iteration number : ', i) print('initial number of samples: ', initial_samples) model, X, Y = single_run(funObj, initial_samples=initial_samples, model_old=None, X_old=None, Y_old=None) model.save(path + r"Airfoil_model_series_{}_context_{}".format(0, 0)) np.savez(path + r'/Airfoil_XY_series_{}_context_{}'.format(0, 0), X, Y) for j in range(1, series.shape[0]): logdir = path + r's{}/context{}/'.format(i, j)