Exemple #1
0
    def save_training_graphs(self, train_recorder, save_dir):
        from alfred.utils.plots import plot_curves, create_fig
        import matplotlib.pyplot as plt

        # Losses

        fig, axes = create_fig((1, 1))
        plot_curves(axes,
                    ys=[train_recorder.tape['d_loss']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode",
                    ylabel="d_loss")

        fig.savefig(str(save_dir / 'losses.png'))
        plt.close(fig)

        # True Returns
        fig, axes = create_fig((1, 2))
        fig.suptitle('True returns')
        plot_curves(axes[0],
                    ys=[train_recorder.tape['return']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode", ylabel="Mean Return")
        plot_curves(axes[1],
                    ys=[train_recorder.tape['eval_return']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode", ylabel="Mean Eval Return")
        fig.savefig(str(save_dir / 'true_returns.png'))
        plt.close(fig)
    def save_training_graphs(self, train_recorder, save_dir):
        from alfred.utils.plots import create_fig, plot_curves
        import matplotlib.pyplot as plt

        # Losses

        fig, axes = create_fig((4, 1))
        plot_curves(axes[0],
                    ys=[train_recorder.tape['q1_loss']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel='Transitions',
                    ylabel='q1_loss')
        plot_curves(axes[1],
                    ys=[train_recorder.tape['q2_loss']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel='Transitions',
                    ylabel='q2_loss')
        plot_curves(axes[2],
                    ys=[train_recorder.tape['alpha_loss']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel="Transitions",
                    ylabel="alpha_loss")
        plot_curves(axes[3],
                    ys=[train_recorder.tape['q_s']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel="Transitions",
                    ylabel="q_s")

        fig.savefig(str(save_dir / 'losses.png'))
        plt.close(fig)

        # True Returns
        fig, axes = create_fig((4, 1))
        fig.suptitle('Returns')
        plot_curves(axes[0],
                    ys=[train_recorder.tape['return']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel='Transitions',
                    ylabel="Mean Return")
        plot_curves(axes[1],
                    ys=[train_recorder.tape['eval_return']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel='Transitions',
                    ylabel="Mean Eval Return")
        plot_curves(axes[2],
                    ys=[train_recorder.tape['pi_entropy']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel="Transitions",
                    ylabel="pi_entropy")
        plot_curves(axes[3],
                    ys=[train_recorder.tape['alpha']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel="Transitions",
                    ylabel="alpha")
        fig.savefig(str(save_dir / 'figures.png'))
        plt.close(fig)
Exemple #3
0
    def create_plots(self, train_recorder, save_dir):

        fig, axes = create_fig((3, 3))
        plot_curves(
            axes[0, 0],
            xs=[remove_nones(train_recorder.tape['update_i'])],
            ys=[remove_nones(train_recorder.tape['reconstruction_loss'])],
            xlabel='update_i',
            ylabel='reconstruction_loss')
        plot_curves(axes[0, 1],
                    xs=[remove_nones(train_recorder.tape['update_i'])],
                    ys=[remove_nones(train_recorder.tape['prior_loss'])],
                    xlabel='update_i',
                    ylabel='prior_loss')
        plot_curves(axes[0, 2],
                    xs=[remove_nones(train_recorder.tape['update_i'])],
                    ys=[remove_nones(train_recorder.tape['total_loss'])],
                    xlabel='update_i',
                    ylabel='total_loss')
        plot_curves(axes[1, 0],
                    xs=[remove_nones(train_recorder.tape['update_i'])],
                    ys=[remove_nones(train_recorder.tape['lr'])],
                    xlabel='update_i',
                    ylabel='lr')

        plt.tight_layout()

        fig.savefig(str(save_dir / 'graphs.png'))
        plt.close(fig)
Exemple #4
0
    def save_training_graphs(self, train_recorder, save_dir):
        from alfred.utils.plots import create_fig, plot_curves
        import matplotlib.pyplot as plt

        # Loss and return

        fig, axes = create_fig((3, 1))
        plot_curves(axes[0],
                    ys=[train_recorder.tape['loss']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel='Transitions',
                    ylabel="loss")
        plot_curves(axes[1],
                    ys=[train_recorder.tape['return']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel="Transitions",
                    ylabel="return")
        plot_curves(axes[2],
                    ys=[train_recorder.tape['eval_return']],
                    xs=[train_recorder.tape['total_transitions']],
                    xlabel="Transitions",
                    ylabel="Eval return")

        fig.savefig(str(save_dir / 'figures.png'))
        plt.close(fig)
Exemple #5
0
    def save_training_graphs(self, train_recorder, save_dir):
        from alfred.utils.plots import create_fig, plot_curves
        import matplotlib.pyplot as plt

        # Losses

        fig, axes = create_fig((1, 1))
        plot_curves(axes,
                    ys=[train_recorder.tape['d_loss']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode",
                    ylabel="d_loss")

        fig.savefig(str(save_dir / 'losses.png'))
        plt.close(fig)

        # True Returns
        fig, axes = create_fig((1, 2))
        fig.suptitle('True returns')
        plot_curves(axes[0],
                    ys=[train_recorder.tape['return']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode", ylabel="Mean Return")
        plot_curves(axes[1],
                    ys=[train_recorder.tape['eval_return']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode", ylabel="Mean Eval Return")
        fig.savefig(str(save_dir / 'true_returns.png'))
        plt.close(fig)

        # Accuracies
        to_plot = ('recall', 'specificity', 'precision', 'accuracy', 'F1')
        if any([k in train_recorder.tape for k in to_plot]):
            fig, axes = create_fig((1, 1))
            ys = [train_recorder.tape[key] for key in to_plot]
            plot_curves(axes, ys=ys,
                        xs=[train_recorder.tape['episode']] * len(ys),
                        xlabel='Episode',
                        ylabel='-',
                        labels=to_plot)
            fig.savefig(str(save_dir / 'Accuracy.png'))
            plt.close(fig)
Exemple #6
0
    def save_training_graphs(self, train_recorder, save_dir):
        from alfred.utils.plots import create_fig, plot_curves
        import matplotlib.pyplot as plt

        # Losses

        fig, axes = create_fig((1, 1))
        plot_curves(axes,
                    ys=[train_recorder.tape['d_loss']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode",
                    ylabel="d_loss")

        fig.savefig(str(save_dir / 'losses.png'))
        plt.close(fig)

        # True Returns
        fig, axes = create_fig((1, 2))
        fig.suptitle('True returns')
        plot_curves(axes[0],
                    ys=[train_recorder.tape['return']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode",
                    ylabel="Mean Return")
        plot_curves(axes[1],
                    ys=[train_recorder.tape['eval_return']],
                    xs=[train_recorder.tape['episode']],
                    xlabel="Episode",
                    ylabel="Mean Eval Return")
        fig.savefig(str(save_dir / 'true_returns.png'))
        plt.close(fig)

        # Estimated Returns
        to_plot = ('IRLAverageEntReward', 'IRLAverageF', 'IRLAverageLogPi',
                   'IRLMedianLogPi', 'ExpertIRLAverageEntReward',
                   'ExpertIRLAverageF', 'ExpertIRLAverageLogPi',
                   'ExpertIRLMedianLogPi')
        if any([k in train_recorder.tape for k in to_plot]):
            fig, axes = create_fig((2, 5))
            for i, key in enumerate(to_plot):
                if key in train_recorder.tape:
                    ax = axes[i // 5, i % 5]
                    plot_curves(ax,
                                ys=[train_recorder.tape[key]],
                                xs=[train_recorder.tape['episode']],
                                xlabel='Episode',
                                ylabel=key)
            fig.savefig(str(save_dir / 'estimated_rewards.png'))
            plt.close(fig)

        # Accuracies
        to_plot = ('recall', 'specificity', 'precision', 'accuracy', 'F1')
        if any([k in train_recorder.tape for k in to_plot]):
            fig, axes = create_fig((1, 1))
            ys = [train_recorder.tape[key] for key in to_plot]
            plot_curves(axes,
                        ys=ys,
                        xs=[train_recorder.tape['episode']] * len(ys),
                        xlabel='Episode',
                        ylabel='-',
                        labels=to_plot)
            fig.savefig(str(save_dir / 'Accuracy.png'))
            plt.close(fig)
Exemple #7
0
def _make_benchmark_performance_figure(storage_dirs,
                                       save_dir,
                                       y_error_bars,
                                       logger,
                                       normalize_with_first_model=True,
                                       sort_bars=False):
    scores, scores_means, scores_err_up, scores_err_down, sorted_inner_keys, reference_key = _gather_scores(
        storage_dirs=storage_dirs,
        save_dir=save_dir,
        y_error_bars=y_error_bars,
        logger=logger,
        normalize_with_first_model=normalize_with_first_model,
        sort_bars=sort_bars)

    # Creates the graph

    n_bars_per_group = len(scores_means.keys())
    n_groups = len(scores_means[reference_key].keys())
    fig, ax = create_fig((1, 1),
                         figsize=(n_bars_per_group * n_groups, n_groups))

    bar_chart(ax,
              scores=scores_means,
              err_up=scores_err_up,
              err_down=scores_err_down,
              group_names=scores_means[reference_key].keys(),
              title="Average Return")

    n_training_seeds = scores[reference_key][list(
        scores_means[reference_key].keys())[0]].shape[0]

    scores_info = load_dict_from_json(
        filename=str(storage_dirs[0] / save_dir /
                     f"{save_dir}_seed_scores_info.json"))

    info_str = f"{n_training_seeds} training seeds" \
               f"\nn_eval_runs={scores_info['n_eval_runs']}" \
               f"\nperformance_metric={scores_info['performance_metric']}" \
               f"\nperformance_aggregation={scores_info['performance_aggregation']}"

    ax.text(0.80,
            0.95,
            info_str,
            transform=ax.transAxes,
            fontsize=12,
            verticalalignment='top',
            bbox=dict(facecolor='gray', alpha=0.1))

    plt.tight_layout()

    # Saves storage_dirs from which the graph was created for traceability

    for storage_dir in storage_dirs:
        os.makedirs(storage_dir / save_dir, exist_ok=True)
        fig.savefig(storage_dir / save_dir / f'{save_dir}_performance.png')
        save_dict_to_json(
            {
                'sources': str(storage_dir) in storage_dirs,
                'n_training_seeds': n_training_seeds,
                'n_eval_runs': scores_info['n_eval_runs'],
                'performance_metric': scores_info['performance_metric'],
                'performance_aggregation':
                scores_info['performance_aggregation']
            }, storage_dir / save_dir / f'{save_dir}_performance_sources.json')

    plt.close(fig)

    # SANITY-CHECKS that no seeds has a Nan score to avoid making create best on it

    expe_with_nan_scores = []
    for outer_key in scores.keys():
        for inner_key, indiv_score in scores[outer_key].items():
            if math.isnan(indiv_score.mean()):
                expe_with_nan_scores.append(outer_key + "/experiment" +
                                            inner_key)

    if len(expe_with_nan_scores) > 0:
        raise ValueError(
            f'Some experiments have nan scores. Remove them from storage and clean summary folder to continue\n'
            f'experiments with Nan Scores:\n' +
            '\n'.join(expe_with_nan_scores))

    return sorted_inner_keys