Exemple #1
0
def show_eval(output_key):
    for mode in [TEST]:
        res = json.load(
            open(data_config.output_path(output_key, mode, EVALUATION), 'r'))
        print(mode)
        print_evaluation(res)
        for col in res[CONFUSION_MATRIX]:
            print(','.join(map(str, col)))
Exemple #2
0
def eval_sub(input_filename):
    dataset = Processor.load_origin(input_filename)
    labels_predict = list(map(lambda _item: _item[-1], dataset))
    labels_gold = load_label_list(data_config.path(FINAL, LABEL))

    res = basic_evaluate(gold=labels_gold, pred=labels_predict)
    print_evaluation(res)
    for col in res[CONFUSION_MATRIX]:
        print(','.join(map(str, col)))
    print()
Exemple #3
0
def main(dataset_key,
         label_version=None,
         config_path='config_svm.yaml',
         kernel='rbf'):
    """
    python algo/svm.py main semeval2018_task3 A

    :param dataset_key: string
    :param label_version: string or None
    :param config_path: string
    :param kernel: string
    :return:
    """
    pos_label = None
    if dataset_key == 'semeval2018_task3' and label_version == 'A':
        pos_label = 1

    config_data = yaml.load(open(config_path))
    train_config = Config(data=config_data)

    data_config = getattr(
        importlib.import_module('dataset.{}.config'.format(dataset_key)),
        'config')
    datasets = load_dataset(data_config, train_config, label_version)

    if train_config.use_class_weights:
        class_weight = 'balanced'
    else:
        class_weight = None

    clf = svm.SVC(class_weight=class_weight, kernel=kernel)
    #clf = LogisticRegression(C=1., random_state=0, class_weight='balanced')

    X = datasets[TRAIN][FEATS]
    clf.fit(X=X, y=datasets[TRAIN][LABEL_GOLD])

    if kernel == 'linear':
        coef = sorted(list(enumerate(clf.coef_.ravel())),
                      key=lambda _item: math.fabs(_item[1]))
        coef = list(map(lambda _item: _item[0], coef))
        print(coef)

    for mode in [TRAIN, TEST]:
        X = datasets[mode][FEATS]
        labels_predict = clf.predict(X=X)
        labels_gold = datasets[mode][LABEL_GOLD]
        res = basic_evaluate(gold=labels_gold,
                             pred=labels_predict,
                             pos_label=pos_label)

        print(mode)
        print_evaluation(res)
        print()
Exemple #4
0
def m3(config_path='e83.yaml'):
    """
    [Usage]
    python3 -m algo.ensemble93 main -e mv --build-analysis

    :param config_path:
    :return:
    """
    config_data = yaml.load(open(config_path))
    config = Config(data=config_data)

    for mode in [TEST, ]:
        labels_gold = load_label_list(data_config.path(mode, LABEL, 'B'))

        b_result = combine(output_keys=config.components(), mode=mode)
        b_vote = list(map(lambda _item: _item[0], b_result))

        b0_result = dict()
        b0_vote = dict()

        last_vote = b_vote

        res = basic_evaluate(gold=labels_gold, pred=last_vote)

        print('{}'.format(mode))
        print_evaluation(res)
        for col in res[CONFUSION_MATRIX]:
            print(','.join(map(str, col)))

        for i in [1, 2, 3]:
            key = 'b0{}'.format(i)
            thr = config.thr(key)
            b0_result[i] = combine(output_keys=config.components(key), mode=mode)

            new_vote = list()
            for l_v, b0_res in zip(last_vote, b0_result[i]):
                this_vote = 0 if b0_res[0] == 0 else i
                if l_v in {0, i} and b0_res[1] >= thr:
                    new_vote.append(this_vote)
                else:
                    new_vote.append(l_v)
            last_vote = new_vote

            res = basic_evaluate(gold=labels_gold, pred=new_vote)

            print('{} - {}'.format(mode, i))
            print_evaluation(res)
            for col in res[CONFUSION_MATRIX]:
                print(','.join(map(str, col)))

        open('latest_ef83.label', 'w').write('\n'.join(list(map(str, last_vote))))
Exemple #5
0
def show_eval(output_key):
    labels_predict = list()
    labels_gold = list()
    for mode in [TRAIN, TEST]:
        path = data_config.output_path(output_key, mode, LABEL_PREDICT)
        labels_predict += load_label_list(path)

        path = data_config.path(mode, LABEL)
        labels_gold += load_label_list(path)

    res = basic_evaluate(gold=labels_gold, pred=labels_predict)
    print_evaluation(res)
    for col in res[CONFUSION_MATRIX]:
        print(','.join(map(str, col)))
Exemple #6
0
def main(config_path='e83.yaml'):
    """
    [Usage]
    python3 -m algo.ensemble93 main -e mv --build-analysis

    :param config_path:
    :return:
    """
    config_data = yaml.load(open(config_path))
    config = Config(data=config_data)

    for mode in [TRAIN, TEST]:
        b_result = combine(output_keys=config.components('b'), mode=mode)
        b_vote = list(map(lambda _item: _item[0], b_result))

        b2_result = combine(output_keys=config.components('b2'), mode=mode)
        b2_vote = list(map(lambda _item: _item[0], b2_result))

        last_vote = list()
        for b_v, b2_v in zip(b_vote, b2_vote):
            if b_v == 0:
                label = 0
            elif b2_v == 0:
                label = 1
            else:
                label = 2
            last_vote.append(label)

        b3_result = combine(output_keys=config.components('b3'), mode=mode)
        b3_vote = list(map(lambda _item: _item[0], b3_result))

        labels_predict = list()
        for last_v, b3_v in zip(last_vote, b3_vote):
            if last_v != 2:
                label = last_v
            elif b3_v == 0:
                label = 2
            else:
                label = 3
            labels_predict.append(label)

        labels_gold = load_label_list(data_config.path(mode, LABEL, 'B'))

        res = basic_evaluate(gold=labels_gold, pred=labels_predict)

        print(mode)
        print_evaluation(res)
        for col in res[CONFUSION_MATRIX]:
            print(','.join(map(str, col)))
Exemple #7
0
def show_eval(output_key):
    """
    [Usage]
    python algo/main.py eval A_ntua_ek_1542454066

    :param output_key: string
    :return:
    """
    for mode in [TRAIN, VALID, TEST]:
        res = json.load(
            open(data_config.output_path(output_key, mode, EVALUATION)))
        print(mode)
        print_evaluation(res)
        for col in res[CONFUSION_MATRIX]:
            print(','.join(map(str, col)))
        print()
Exemple #8
0
def show_eval(dataset_key, output_key):
    """
    [Usage]
    python algo/main.py eval semeval2018_task3 -o A_ntua_ek_1542454066

    :param dataset_key: string
    :param output_key: string
    :return:
    """
    data_config = getattr(
        importlib.import_module('dataset.{}.config'.format(dataset_key)),
        'config')

    for mode in [TRAIN, TEST]:
        res = json.load(
            open(data_config.output_path(output_key, mode, EVALUATION)))
        print(mode)
        print_evaluation(res)
        print(res)
Exemple #9
0
def m3a(target=0, thr=1, config_path='e83a.yaml'):
    target = int(target)
    thr = int(thr)
    config_data = yaml.load(open(config_path))
    config = Config(data=config_data)

    for mode in [TEST, ]:
        labels_gold = load_label_list(data_config.path(mode, LABEL, 'A'))

        b_result = combine(output_keys=config.components(), mode=mode)
        new_vote = list()
        for r in b_result:
            if r[0] == target and r[1] >= thr:
                new_vote.append(target)
            else:
                new_vote.append(1 - target)
        res = basic_evaluate(gold=labels_gold, pred=new_vote)

        print('{}'.format(mode))
        print_evaluation(res)
        for col in res[CONFUSION_MATRIX]:
            print(','.join(map(str, col)))

        last_vote = new_vote
        output_keys = config.components('b')
        b_result, counts = combine(output_keys=output_keys, mode=mode, full_output=True)
        new_vote = list()
        for count, l_v in zip(counts, last_vote):
            if count[0] <= 1:
                new_vote.append(0)
            else:
                new_vote.append(l_v)
        res = basic_evaluate(gold=labels_gold, pred=new_vote)
        print('{}'.format(mode))
        print_evaluation(res)
        for col in res[CONFUSION_MATRIX]:
            print(','.join(map(str, col)))
Exemple #10
0
def show_eval(output_key):
    labels_predict_ = dict()
    labels_gold_ = dict()
    for mode in [TRAIN, TEST, FINAL]:
        path = data_config.output_path(output_key, mode, LABEL_PREDICT)
        labels_predict_[mode] = load_label_list(path)

        path = data_config.path(mode, LABEL)
        labels_gold_[mode] = load_label_list(path)

    print('TRAIN + TEST')
    res = basic_evaluate(gold=labels_gold_[TRAIN] + labels_gold_[TEST],
                         pred=labels_predict_[TRAIN] + labels_predict_[TEST])
    print_evaluation(res)
    for col in res[CONFUSION_MATRIX]:
        print(','.join(map(str, col)))
    print()

    print('FINAL')
    res = basic_evaluate(gold=labels_gold_[FINAL], pred=labels_predict_[FINAL])
    print_evaluation(res)
    for col in res[CONFUSION_MATRIX]:
        print(','.join(map(str, col)))
    print()
def test_submit(filename_pred, filename_gold):
    pred = map(lambda _item: _item[-1], Processor.load_origin(filename_pred))
    gold = map(lambda _item: _item[-1], Processor.load_origin(filename_gold))
    res = basic_evaluate(pred, gold)
    print_evaluation(res)
Exemple #12
0
def train(dataset_key,
          text_version,
          label_version=None,
          config_path='config.yaml'):
    """
    python algo/main.py train semeval2018_task3 -l A -t ek
    python algo/main.py train semeval2018_task3 -l A -t ek -c config_ntua.yaml
    python algo/main.py train semeval2018_task3 -l A -t raw -c config_ntua_char.yaml

    python algo/main.py train semeval2019_task3_dev -t ek

    python algo/main.py train semeval2018_task1 -l love
    python algo/main.py train semeval2014_task9

    :param dataset_key: string
    :param text_version: string
    :param label_version: string
    :param config_path: string
    :return:
    """
    pos_label = None
    if dataset_key == 'semeval2018_task3' and label_version == 'A':
        pos_label = 1

    config_data = yaml.load(open(config_path))

    data_config = getattr(
        importlib.import_module('dataset.{}.config'.format(dataset_key)),
        'config')

    output_key = '{}_{}_{}'.format(config_data['module'].rsplit('.', 1)[1],
                                   text_version, int(time.time()))
    if label_version is not None:
        output_key = '{}_{}'.format(label_version, output_key)
    print('OUTPUT_KEY: {}'.format(output_key))

    # 准备输出路径的文件夹
    data_config.prepare_output_folder(output_key=output_key)
    data_config.prepare_model_folder(output_key=output_key)

    shutil.copy(config_path, data_config.output_path(output_key, ALL, CONFIG))

    # 根据配置加载模块
    module_relative_path = config_data['module']
    NNModel = getattr(importlib.import_module(module_relative_path), 'NNModel')
    NNConfig = getattr(importlib.import_module(module_relative_path),
                       'NNConfig')

    if config_data['analyzer'] == WORD:
        w2v_key = '{}_{}'.format(config_data['word']['w2v_version'],
                                 text_version)
        w2v_model_path = data_config.path(ALL, WORD2VEC, w2v_key)
        vocab_train_path = data_config.path(TRAIN, VOCAB, text_version)

        # 加载字典集
        # 在模型中会采用所有模型中支持的词向量, 并为有足够出现次数的单词随机生成词向量
        vocab_meta_list = load_vocab_list(vocab_train_path)
        vocab_meta_list += load_vocab_list(
            semeval2018_task3_date_config.path(TRAIN, VOCAB, text_version))
        vocabs = [
            _meta['t'] for _meta in vocab_meta_list
            if _meta['tf'] >= config_data[WORD]['min_tf']
        ]

        # 加载词向量与相关数据
        lookup_table, vocab_id_mapping, embedding_dim = load_lookup_table(
            w2v_model_path=w2v_model_path, vocabs=vocabs)
        json.dump(
            vocab_id_mapping,
            open(data_config.output_path(output_key, ALL, VOCAB_ID_MAPPING),
                 'w'))
        max_seq_len = MAX_WORD_SEQ_LEN
    elif config_data['analyzer'] == CHAR:
        texts = load_text_list(data_config.path(TRAIN, TEXT))
        char_set = set()
        for text in texts:
            char_set |= set(text)
        lookup_table, vocab_id_mapping, embedding_dim = build_random_lookup_table(
            vocabs=char_set, dim=config_data['char']['embedding_dim'])
        max_seq_len = MAX_CHAR_SEQ_LEN
    else:
        raise ValueError('invalid analyzer: {}'.format(
            config_data['analyzer']))

    # 加载训练数据
    datasets, output_dim = load_dataset(data_config=data_config,
                                        analyzer=config_data['analyzer'],
                                        vocab_id_mapping=vocab_id_mapping,
                                        seq_len=max_seq_len,
                                        with_label=True,
                                        label_version=label_version,
                                        text_version=text_version)

    # 加载配置
    nn_config = NNConfig(config_data)
    train_config = TrainConfig(config_data['train'])

    # 初始化数据集的检索
    index_iterators = {
        mode: IndexIterator(datasets[mode][LABEL_GOLD])
        for mode in [TRAIN, TEST]
    }
    # 按配置将训练数据切割成训练集和验证集
    index_iterators[TRAIN].split_train_valid(train_config.valid_rate)

    # 计算各个类的权重
    if train_config.use_class_weights:
        label_weight = {
            # 参考 sklearn 中 class_weight='balanced'的公式, 实验显示效果显着
            _label: float(index_iterators[TRAIN].n_sample()) /
            (index_iterators[TRAIN].dim * len(_index))
            for _label, _index in index_iterators[TRAIN].label_index.items()
        }
    else:
        label_weight = {
            _label: 1.
            for _label in range(index_iterators[TRAIN].dim)
        }

    # 基于加载的数据更新配置
    nn_config.set_embedding_dim(embedding_dim)
    nn_config.set_output_dim(output_dim)
    nn_config.set_seq_len(max_seq_len)
    # 搭建神经网络
    nn = NNModel(config=nn_config)
    nn.build_neural_network(lookup_table=lookup_table)

    batch_size = train_config.batch_size
    fetches = {
        mode: {_key: nn.var(_key)
               for _key in fetch_key[mode]}
        for mode in [TRAIN, TEST]
    }
    last_eval = {TRAIN: None, VALID: None, TEST: None}

    model_output_prefix = data_config.model_path(key=output_key) + '/model'

    best_res = {mode: None for mode in [TRAIN, VALID]}
    no_update_count = {mode: 0 for mode in [TRAIN, VALID]}
    max_no_update_count = 10

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver(tf.global_variables())

        dataset = datasets[TRAIN]
        index_iterator = index_iterators[TRAIN]

        # 训练开始 ##########################################################################
        for epoch in range(train_config.epoch):
            print('== epoch {} =='.format(epoch))

            # 利用训练集进行训练
            print('TRAIN')
            n_sample = index_iterator.n_sample(TRAIN)
            labels_predict = list()
            labels_gold = list()

            for batch_index in index_iterator.iterate(batch_size,
                                                      mode=TRAIN,
                                                      shuffle=True):
                feed_dict = {
                    nn.var(_key): dataset[_key][batch_index]
                    for _key in feed_key[TRAIN]
                }
                feed_dict[nn.var(SAMPLE_WEIGHTS)] = list(
                    map(label_weight.get, feed_dict[nn.var(LABEL_GOLD)]))
                feed_dict[nn.var(TEST_MODE)] = 0
                res = sess.run(fetches=fetches[TRAIN], feed_dict=feed_dict)

                labels_predict += res[LABEL_PREDICT].tolist()
                labels_gold += dataset[LABEL_GOLD][batch_index].tolist()

            labels_predict, labels_gold = labels_predict[:
                                                         n_sample], labels_gold[:
                                                                                n_sample]
            labels_predict, labels_gold = labels_predict[:
                                                         n_sample], labels_gold[:
                                                                                n_sample]
            res = basic_evaluate(gold=labels_gold,
                                 pred=labels_predict,
                                 pos_label=pos_label)
            last_eval[TRAIN] = res
            print_evaluation(res)

            global_step = tf.train.global_step(sess, nn.var(GLOBAL_STEP))

            if train_config.valid_rate == 0.:
                if best_res[TRAIN] is None or res[F1_SCORE] > best_res[TRAIN][
                        F1_SCORE]:
                    best_res[TRAIN] = res
                    no_update_count[TRAIN] = 0
                    saver.save(sess,
                               save_path=model_output_prefix,
                               global_step=global_step)
                else:
                    no_update_count[TRAIN] += 1
            else:
                if best_res[TRAIN] is None or res[F1_SCORE] > best_res[TRAIN][
                        F1_SCORE]:
                    best_res[TRAIN] = res
                    no_update_count[TRAIN] = 0
                else:
                    no_update_count[TRAIN] += 1

                # 计算在验证集上的表现, 不更新模型参数
                print('VALID')
                n_sample = index_iterator.n_sample(VALID)
                labels_predict = list()
                labels_gold = list()

                for batch_index in index_iterator.iterate(batch_size,
                                                          mode=VALID,
                                                          shuffle=False):
                    feed_dict = {
                        nn.var(_key): dataset[_key][batch_index]
                        for _key in feed_key[TEST]
                    }
                    feed_dict[nn.var(TEST_MODE)] = 1
                    res = sess.run(fetches=fetches[TEST], feed_dict=feed_dict)
                    labels_predict += res[LABEL_PREDICT].tolist()
                    labels_gold += dataset[LABEL_GOLD][batch_index].tolist()

                labels_predict, labels_gold = labels_predict[:
                                                             n_sample], labels_gold[:
                                                                                    n_sample]
                res = basic_evaluate(gold=labels_gold,
                                     pred=labels_predict,
                                     pos_label=pos_label)
                last_eval[VALID] = res
                print_evaluation(res)

                # Early Stop
                if best_res[VALID] is None or res[F1_SCORE] > best_res[VALID][
                        F1_SCORE]:
                    saver.save(sess,
                               save_path=model_output_prefix,
                               global_step=global_step)
                    best_res[VALID] = res
                    no_update_count[VALID] = 0
                else:
                    no_update_count[VALID] += 1

            if no_update_count[TRAIN] >= max_no_update_count:
                break

        # 训练结束 ##########################################################################
        # 确保输出文件夹存在

    print(
        '========================= BEST ROUND EVALUATION ========================='
    )

    with tf.Session() as sess:
        prefix_checkpoint = tf.train.latest_checkpoint(
            data_config.model_path(key=output_key))
        saver = tf.train.import_meta_graph('{}.meta'.format(prefix_checkpoint))
        saver.restore(sess, prefix_checkpoint)

        nn = BaseNNModel(config=None)
        nn.set_graph(tf.get_default_graph())

        for mode in [TRAIN, TEST]:
            dataset = datasets[mode]
            index_iterator = index_iterators[mode]
            n_sample = index_iterator.n_sample()

            prob_predict = list()
            labels_predict = list()
            labels_gold = list()
            hidden_feats = list()

            for batch_index in index_iterator.iterate(batch_size,
                                                      shuffle=False):
                feed_dict = {
                    nn.var(_key): dataset[_key][batch_index]
                    for _key in feed_key[TEST]
                }
                feed_dict[nn.var(TEST_MODE)] = 1
                res = sess.run(fetches=fetches[TEST], feed_dict=feed_dict)
                prob_predict += res[PROB_PREDICT].tolist()
                labels_predict += res[LABEL_PREDICT].tolist()
                hidden_feats += res[HIDDEN_FEAT].tolist()
                labels_gold += dataset[LABEL_GOLD][batch_index].tolist()

            prob_predict = prob_predict[:n_sample]
            labels_predict = labels_predict[:n_sample]
            labels_gold = labels_gold[:n_sample]
            hidden_feats = hidden_feats[:n_sample]

            if mode == TEST:
                res = basic_evaluate(gold=labels_gold,
                                     pred=labels_predict,
                                     pos_label=pos_label)
                best_res[TEST] = res

            # 导出隐藏层
            with open(data_config.output_path(output_key, mode, HIDDEN_FEAT),
                      'w') as file_obj:
                for _feat in hidden_feats:
                    file_obj.write('\t'.join(map(str, _feat)) + '\n')
            # 导出预测的label
            with open(data_config.output_path(output_key, mode, LABEL_PREDICT),
                      'w') as file_obj:
                for _label in labels_predict:
                    file_obj.write('{}\n'.format(_label))
            with open(data_config.output_path(output_key, mode, PROB_PREDICT),
                      'w') as file_obj:
                for _prob in prob_predict:
                    file_obj.write('\t'.join(map(str, _prob)) + '\n')

        for mode in [TRAIN, VALID, TEST]:
            if mode == VALID and train_config.valid_rate == 0.:
                continue
            res = best_res[mode]
            print(mode)
            print_evaluation(res)

            json.dump(
                res,
                open(data_config.output_path(output_key, mode, EVALUATION),
                     'w'))
            print()

    print('OUTPUT_KEY: {}'.format(output_key))
Exemple #13
0
def logistic_regression(dataset_key,
                        text_version,
                        label_version=None,
                        use_class_weights=True):
    """
    python algo/svm.py lr semeval2018_task3 -t ek -l A
    """
    from sklearn.preprocessing import Normalizer
    from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer, HashingVectorizer

    data_config = getattr(
        importlib.import_module('dataset.{}.config'.format(dataset_key)),
        'config')
    pos_label = None
    if dataset_key == 'semeval2018_task3' and label_version == 'A':
        pos_label = 1

    datasets = dict()
    for mode in [TRAIN, TEST]:
        datasets[mode] = {
            TEXT: load_text_list(data_config.path(mode, TEXT, text_version)),
            LABEL: load_label_list(data_config.path(mode, LABEL,
                                                    label_version))
        }

    max_features = 10000
    '''vectorizer = TfidfVectorizer(
        ngram_range=(1, 1),
        #tokenizer=lambda x: x.split(' '),
        #tokenizer=lambda x: x.split(' '),
        analyzer='word',
        min_df=5,
        # max_df=0.9,
        lowercase=False,
        use_idf=True,
        smooth_idf=True,
        max_features=max_features,
        sublinear_tf=True
    )'''

    vectorizer = TfidfVectorizer(
        ngram_range=(1, 6),
        analyzer='char',
        lowercase=False,
        smooth_idf=True,
        #sublinear_tf=True,
        max_features=50000)

    clf = LogisticRegression(C=1., random_state=0, class_weight='balanced')
    #clf = svm.SVC(C=0.6, random_state=0, kernel='linear', class_weight='balanced')
    #clf = svm.SVC(C=0.6, random_state=0, kernel='rbf', class_weight='balanced')

    pipeline = Pipeline([
        ('vectorizer', vectorizer),
        #('normalizer', Normalizer(norm='l2')),
        ('clf', clf)
    ])

    pipeline.fit(datasets[TRAIN][TEXT], datasets[TRAIN][LABEL])

    for mode in [TRAIN, TEST]:
        labels_predict = pipeline.predict(datasets[mode][TEXT])
        #print(labels_predict)
        labels_gold = datasets[mode][LABEL]
        res = basic_evaluate(gold=labels_gold,
                             pred=labels_predict,
                             pos_label=pos_label)

        print(mode)
        print_evaluation(res)
        print()
Exemple #14
0
def main(label_version,
         ensemble_mode='mv',
         config_path='e83.yaml',
         build_analysis=False):
    """
    [Usage]
    python algo/ensemble.py main -d semeval2018_task3 -l A -e mv
    python algo/ensemble.py main -d semeval2018_task3 -l A -e mv --build-analysis

    :param dataset_key: 
    :param label_version: 
    :param ensemble_mode: 
    :param config_path:
    :param build_analysis: bool
    :return: 
    """
    dataset_key = 'semeval2018_task3'
    output_key = 'ensemble_{}_{}'.format(ensemble_mode, int(time.time()))

    pos_label = None
    if dataset_key == 'semeval2018_task3' and label_version == 'A':
        pos_label = 1

    config_data = yaml.load(open(config_path))
    config = Config(data=config_data)
    data_config = getattr(
        importlib.import_module('dataset.{}.config'.format(dataset_key)),
        'config')

    labels_predict = dict()
    labels_gold = dict()
    n_sample = dict()
    for mode in [TRAIN, TEST]:
        label_path = data_config.path(mode, LABEL, label_version)
        labels_gold[mode] = load_label_list(label_path)
        n_sample[mode] = len(labels_gold[mode])
    output_dim = max(labels_gold[TEST]) + 1

    if ensemble_mode == SOFT_VOTING:
        for mode in [TRAIN, TEST]:
            components = dict()
            for output_key in config.components:
                path = data_config.output_path(output_key, mode, PROB_PREDICT)

                prob_list = list()
                with open(path) as file_obj:
                    for line in file_obj:
                        line = line.strip()
                        if line == '':
                            continue
                        prob = list(map(float, line.split('\t')))
                        prob_list.append(prob)
                components[output_key] = prob_list

            labels = list()
            for i in range(n_sample[mode]):
                prob = np.zeros((output_dim, ))
                for output_key, prob_list in components.items():
                    prob += np.asarray(prob_list[i])
                labels.append(np.argmax(prob))
            labels_predict[mode] = labels

    elif ensemble_mode == MAJORITY_VOTING:
        components = dict()

        for mode in [TRAIN, TEST]:
            for output_key in config.components:
                path = data_config.output_path(output_key, mode, LABEL_PREDICT)
                label_list = list()
                with open(path) as file_obj:
                    for line in file_obj:
                        line = line.strip()
                        if line == '':
                            continue
                        label = int(line)
                        label_list.append(label)
                components[output_key] = label_list

            labels = list()
            for i in range(n_sample[mode]):
                prob = np.zeros((output_dim, ))
                for output_key, label_list in components.items():
                    label = label_list[i]
                    prob[label] += 1
                labels.append(np.argmax(prob))
            labels_predict[mode] = labels

    elif ensemble_mode == WEIGHTED_MAJORITY_VOTE:
        raise NotImplementedError
    else:
        raise ValueError('unknown mode: {}'.format(ensemble_mode))

    for mode in [TRAIN, TEST]:
        res = basic_evaluate(gold=labels_gold[mode],
                             pred=labels_predict[mode],
                             pos_label=pos_label)
        print(mode)
        print_evaluation(res)
        print()

        if build_analysis:
            output_path = data_config.path(mode, ANALYSIS, WRONG_PREDICT)
            text_list = load_text_list(data_config.path(mode, TEXT))
            res = generate_wrong_prediction_report(
                labels_gold=labels_gold[mode],
                labels_predict=labels_predict[mode],
                text_list=text_list)
            with open(output_path, 'w') as file_obj:
                file_obj.write('gold\tpredict\ttext')
                for l_gold, l_predict, t in res:
                    file_obj.write('{} {} {}\n'.format(l_gold, l_predict, t))
Exemple #15
0
def train(model_name,
          label_version=None,
          label_key=None,
          config_path='c93f.yaml',
          check=False):
    """
    python -m algo.main93_v2 train
    python3 -m algo.main93_v2 train -c config_ntua93.yaml

    :param model_name: string
    :param label_version: string
    :param config_path: string
    :return:
    """
    text_version = 'ek'
    config_data = yaml.load(open(config_path))
    NNModel = getattr(
        importlib.import_module('algo.m93.{}'.format(model_name)), 'NNModel')

    output_key = '{}_{}_{}'.format(model_name, text_version, int(time.time()))
    if label_key is not None:
        output_key = '{}_{}'.format(label_key, output_key)
    output_key = 'f_{}'.format(output_key)
    print('OUTPUT_KEY: {}'.format(output_key))

    # 准备输出路径的文件夹
    data_config.prepare_output_folder(output_key=output_key)
    data_config.prepare_model_folder(output_key=output_key)

    shutil.copy(config_path, data_config.output_path(output_key, ALL, CONFIG))

    w2v_key = '{}_{}'.format(config_data['word']['w2v_version'], text_version)
    w2v_model_path = data_config.path(ALL, WORD2VEC, w2v_key)
    vocab_train_path = data_config.path(TRAIN, VOCAB, text_version)

    # 加载字典集
    # 在模型中会采用所有模型中支持的词向量, 并为有足够出现次数的单词随机生成词向量
    vocab_meta_list = load_vocab_list(vocab_train_path)
    vocabs = [
        _meta['t'] for _meta in vocab_meta_list
        if _meta['tf'] >= config_data['word']['min_tf']
    ]

    # 加载词向量与相关数据
    lookup_table, vocab_id_mapping, embedding_dim = load_lookup_table2(
        w2v_model_path=w2v_model_path, vocabs=vocabs)
    json.dump(
        vocab_id_mapping,
        open(data_config.output_path(output_key, ALL, VOCAB_ID_MAPPING), 'w'))

    # 加载配置
    nn_config = NNConfig(config_data)
    train_config = TrainConfig(config_data['train'])
    early_stop_metric = train_config.early_stop_metric

    # 加载训练数据
    datasets = dict()
    datasets[TRAIN], output_dim = load_dataset(
        mode=[TRAIN, TEST],
        vocab_id_mapping=vocab_id_mapping,
        max_seq_len=nn_config.seq_len,
        label_version=label_version,
        sampling=train_config.train_sampling,
        label_map=train_config.label_map(label_key))
    datasets[TEST], _ = load_dataset(
        mode=FINAL,
        vocab_id_mapping=vocab_id_mapping,
        max_seq_len=nn_config.seq_len,
        label_version=label_version,
        sampling=False,
        label_map=train_config.label_map(label_key))

    # 初始化数据集的检索
    index_iterators = {
        TRAIN: IndexIterator.from_dataset(datasets[TRAIN]),
        TEST: IndexIterator.from_dataset(datasets[TEST])
    }
    # 按配置将训练数据切割成训练集和验证集
    index_iterators[TRAIN].split_train_valid(train_config.valid_rate)

    # 计算各个类的权重
    if train_config.use_class_weights:
        label_weight = {
            # 参考 sklearn 中 class_weight='balanced'的公式, 实验显示效果显着
            _label: float(index_iterators[TRAIN].n_sample()) /
            (index_iterators[TRAIN].dim * len(_index))
            for _label, _index in index_iterators[TRAIN].label_index.items()
        }
    else:
        label_weight = {
            _label: 1.
            for _label in range(index_iterators[TRAIN].dim)
        }

    # 基于加载的数据更新配置
    nn_config.set_embedding_dim(embedding_dim)
    nn_config.set_output_dim(output_dim)
    # 搭建神经网络
    nn = NNModel(config=nn_config)
    nn.build_neural_network(lookup_table=lookup_table)

    batch_size = train_config.batch_size
    fetches = {
        mode: {_key: nn.var(_key)
               for _key in fetch_key[mode]}
        for mode in [TRAIN, TEST]
    }

    model_output_prefix = data_config.model_path(key=output_key) + '/model'

    best_res = {mode: None for mode in [TRAIN, VALID, TEST]}
    no_update_count = {mode: 0 for mode in [TRAIN, VALID]}
    max_no_update_count = 10

    eval_history = {TRAIN: list(), VALID: list(), TEST: list()}
    best_epoch = -1
    best_epoch_test = -1

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver(tf.global_variables())

        dataset = datasets[TRAIN]
        index_iterator = index_iterators[TRAIN]

        # 训练开始 ##########################################################################
        for epoch in range(train_config.epoch):
            print('== epoch {} = {} ='.format(epoch, output_key))

            # 利用训练集进行训练
            print('TRAIN')
            n_sample = index_iterator.n_sample(TRAIN)
            labels_predict = list()
            labels_gold = list()

            for batch_index in index_iterator.iterate(batch_size,
                                                      mode=TRAIN,
                                                      shuffle=True):
                feed_dict = {
                    nn.var(_key): dataset[_key][batch_index]
                    for _key in feed_key[TRAIN]
                }
                feed_dict[nn.var(SAMPLE_WEIGHTS)] = list(
                    map(label_weight.get, feed_dict[nn.var(LABEL_GOLD)]))
                feed_dict[nn.var(TEST_MODE)] = 0
                res = sess.run(fetches=fetches[TRAIN], feed_dict=feed_dict)

                labels_predict += res[LABEL_PREDICT].tolist()
                labels_gold += dataset[LABEL_GOLD][batch_index].tolist()

            labels_predict, labels_gold = labels_predict[:
                                                         n_sample], labels_gold[:
                                                                                n_sample]
            res = basic_evaluate(gold=labels_gold, pred=labels_predict)
            print_evaluation(res)
            eval_history[TRAIN].append(res)

            global_step = tf.train.global_step(sess, nn.var(GLOBAL_STEP))

            if train_config.valid_rate == 0.:
                if best_epoch <= 10 or (best_res[TRAIN] is None
                                        or res[early_stop_metric] >
                                        best_res[TRAIN][early_stop_metric]):
                    best_epoch = epoch
                    best_res[TRAIN] = res
                    no_update_count[TRAIN] = 0
                    saver.save(sess,
                               save_path=model_output_prefix,
                               global_step=global_step)
                else:
                    no_update_count[TRAIN] += 1
            else:
                if best_res[TRAIN] is None or res[
                        early_stop_metric] > best_res[TRAIN][early_stop_metric]:
                    best_res[TRAIN] = res
                    no_update_count[TRAIN] = 0
                else:
                    no_update_count[TRAIN] += 1

                # 计算在验证集上的表现, 不更新模型参数
                print('VALID')
                n_sample = index_iterator.n_sample(VALID)
                labels_predict = list()
                labels_gold = list()

                for batch_index in index_iterator.iterate(batch_size,
                                                          mode=VALID,
                                                          shuffle=False):
                    feed_dict = {
                        nn.var(_key): dataset[_key][batch_index]
                        for _key in feed_key[TEST]
                    }
                    feed_dict[nn.var(TEST_MODE)] = 1
                    res = sess.run(fetches=fetches[TEST], feed_dict=feed_dict)

                    labels_predict += res[LABEL_PREDICT].tolist()
                    labels_gold += dataset[LABEL_GOLD][batch_index].tolist()

                labels_predict, labels_gold = labels_predict[:
                                                             n_sample], labels_gold[:
                                                                                    n_sample]
                res = basic_evaluate(gold=labels_gold, pred=labels_predict)
                eval_history[VALID].append(res)
                print_evaluation(res)

                # Early Stop
                if best_epoch <= 10 or (best_res[VALID] is None
                                        or res[early_stop_metric] >
                                        best_res[VALID][early_stop_metric]):
                    best_epoch = epoch
                    saver.save(sess,
                               save_path=model_output_prefix,
                               global_step=global_step)
                    best_res[VALID] = res
                    no_update_count[VALID] = 0
                else:
                    no_update_count[VALID] += 1

            # eval test
            _mode = TEST
            _dataset = datasets[_mode]
            _index_iterator = SimpleIndexIterator.from_dataset(_dataset)
            _n_sample = _index_iterator.n_sample()

            labels_predict = list()
            labels_gold = list()
            for batch_index in _index_iterator.iterate(batch_size,
                                                       shuffle=False):
                feed_dict = {
                    nn.var(_key): _dataset[_key][batch_index]
                    for _key in feed_key[TEST]
                }
                feed_dict[nn.var(TEST_MODE)] = 1
                res = sess.run(fetches=fetches[TEST], feed_dict=feed_dict)

                labels_predict += res[LABEL_PREDICT].tolist()
                labels_gold += _dataset[LABEL_GOLD][batch_index].tolist()
            labels_predict, labels_gold = labels_predict[:
                                                         _n_sample], labels_gold[:
                                                                                 _n_sample]
            res = basic_evaluate(gold=labels_gold, pred=labels_predict)
            eval_history[TEST].append(res)
            print('TEST')
            print_evaluation(res)

            if best_res[TEST] is None or res[F1_SCORE] > best_res[TEST][
                    F1_SCORE]:
                best_res[TEST] = res
                best_epoch_test = epoch

            if no_update_count[TRAIN] >= max_no_update_count:
                break

        # 训练结束 ##########################################################################
        # 确保输出文件夹存在

    print(
        '========================= BEST ROUND EVALUATION ========================='
    )

    json.dump(eval_history,
              open(data_config.output_path(output_key, 'eval', 'json'), 'w'))

    labels_predict_final = None
    labels_gold_final = load_label_list(data_config.path(FINAL, LABEL))

    with tf.Session() as sess:
        prefix_checkpoint = tf.train.latest_checkpoint(
            data_config.model_path(key=output_key))
        saver = tf.train.import_meta_graph('{}.meta'.format(prefix_checkpoint))
        saver.restore(sess, prefix_checkpoint)

        nn = BaseNNModel(config=None)
        nn.set_graph(tf.get_default_graph())
        for mode in [TRAIN, TEST, FINAL]:
            dataset = load_dataset(mode=mode,
                                   vocab_id_mapping=vocab_id_mapping,
                                   max_seq_len=nn_config.seq_len,
                                   with_label=False)
            index_iterator = SimpleIndexIterator.from_dataset(dataset)
            n_sample = index_iterator.n_sample()

            prob_predict = list()
            labels_predict = list()

            for batch_index in index_iterator.iterate(batch_size,
                                                      shuffle=False):
                feed_dict = {
                    nn.var(_key): dataset[_key][batch_index]
                    for _key in feed_key[TEST]
                }
                feed_dict[nn.var(TEST_MODE)] = 1
                res = sess.run(fetches=fetches[TEST], feed_dict=feed_dict)
                prob_predict += res[PROB_PREDICT].tolist()
                labels_predict += res[LABEL_PREDICT].tolist()

            prob_predict = prob_predict[:n_sample]
            labels_predict = labels_predict[:n_sample]

            if mode == FINAL:
                labels_predict_final = labels_predict

            # 导出预测的label
            with open(data_config.output_path(output_key, mode, LABEL_PREDICT),
                      'w') as file_obj:
                for _label in labels_predict:
                    file_obj.write('{}\n'.format(_label))
            with open(data_config.output_path(output_key, mode, PROB_PREDICT),
                      'w') as file_obj:
                for _prob in prob_predict:
                    file_obj.write('\t'.join(map(str, _prob)) + '\n')

    print('====== best epoch test: {} ======'.format(best_epoch_test))

    for mode in [TRAIN, VALID, TEST]:
        if mode == VALID and train_config.valid_rate == 0.:
            continue

        print(mode)
        res = eval_history[mode][best_epoch_test]
        print_evaluation(res)

        if mode == TEST:
            for col in res[CONFUSION_MATRIX]:
                print(','.join(map(str, col)))

    print(eval_history[TEST][best_epoch_test])
    print()

    print('====== best epoch valid: {} ======'.format(best_epoch))
    for mode in [TRAIN, VALID, TEST]:
        if mode == VALID and train_config.valid_rate == 0.:
            continue

        print(mode)
        res = eval_history[mode][best_epoch]
        print_evaluation(res)

        if mode == TEST:
            for col in res[CONFUSION_MATRIX]:
                print(','.join(map(str, col)))

        json.dump(
            res,
            open(data_config.output_path(output_key, mode, EVALUATION), 'w'))
        print()

    print(eval_history[TEST][best_epoch])
    print()

    if check:
        print('====== label_map check ======')

        label_map = train_config.label_map(label_key)
        if label_map is not None:
            new_gold = list()
            new_pred = list()
            for g, p in zip(labels_gold_final, labels_predict_final):
                if g in label_map:
                    new_gold.append(label_map[g])
                    new_pred.append(p)
            labels_gold_final = new_gold
            labels_predict_final = new_pred

        res = basic_evaluate(gold=labels_gold_final, pred=labels_predict_final)
        print_evaluation(res)
        for col in res[CONFUSION_MATRIX]:
            print(','.join(map(str, col)))

    print('OUTPUT_KEY: {}'.format(output_key))
Exemple #16
0
def main(ensemble_mode, config_path='e93.yaml', final_output=None):
    """
    [Usage]
    python3 -m algo.ensemble93 main -e mv --build-analysis

    :param ensemble_mode:
    :param config_path:
    :param final_output: string
    :return:
    """
    config_data = yaml.load(open(config_path))
    config = Config(data=config_data)

    labels_predict = dict()
    labels_predict_last = dict()
    labels_gold = dict()

    n_sample = dict()

    modes = {
        TRAIN: [TRAIN, TEST],
        FINAL: [
            FINAL,
        ]
    }

    for mode in [TRAIN, FINAL]:
        labels = list()
        for _mode in modes[mode]:
            label_path = data_config.path(_mode, LABEL, None)
            labels += load_label_list(label_path)
        labels_gold[mode] = labels
        n_sample[mode] = len(labels)
    output_dim = max(labels_gold[TRAIN]) + 1

    if ensemble_mode == SOFT_VOTING:
        for mode in [TRAIN, TEST]:
            components = dict()
            for output_key in config.components:
                path = data_config.output_path(output_key, mode, PROB_PREDICT)

                prob_list = list()
                with open(path) as file_obj:
                    for line in file_obj:
                        line = line.strip()
                        if line == '':
                            continue
                        prob = list(map(float, line.split('\t')))
                        prob_list.append(prob)
                components[output_key] = prob_list

            labels = list()
            for i in range(n_sample[mode]):
                prob = np.zeros((output_dim, ))
                for output_key, prob_list in components.items():
                    prob += np.asarray(prob_list[i])
                labels.append(np.argmax(prob))
            labels_predict[mode] = labels

    elif ensemble_mode == MAJORITY_VOTING:
        for mode in [TRAIN, FINAL]:
            components = list()

            for output_key in config.components:
                label_list = list()
                for _mode in modes[mode]:
                    path = data_config.output_path(output_key, _mode,
                                                   LABEL_PREDICT)
                    label_list += load_label_list(path)
                components.append(label_list)

            labels = list()
            for i in range(n_sample[mode]):
                prob = np.zeros((output_dim, ))
                for label_list in components:
                    label = label_list[i]
                    prob[label] += 1
                labels.append(np.argmax(prob))
            labels_predict[mode] = labels

    elif ensemble_mode == WEIGHTED_MAJORITY_VOTE:
        raise NotImplementedError
    else:
        raise ValueError('unknown mode: {}'.format(ensemble_mode))

    for mode in [TRAIN, FINAL]:
        if mode == TRAIN: continue

        print('=== {} ==='.format(mode))
        res = basic_evaluate(gold=labels_gold[mode], pred=labels_predict[mode])
        print(mode)
        print_evaluation(res)
        for col in res[CONFUSION_MATRIX]:
            print(','.join(map(str, col)))
        print()

        n_sample = len(labels_predict[mode])
        labels_predict_last[mode] = labels_predict[mode]

        # 修正HAS
        if config.tri_enabled:
            n_changed = 0

            votes = [[0 for _ in range(4)] for _ in range(n_sample)]
            for output_key in config.tri:
                labels = list()
                for _mode in modes[mode]:
                    path = data_config.output_path(output_key, _mode,
                                                   LABEL_PREDICT)
                    labels += load_label_list(path)
                if len(labels) != n_sample:
                    raise Exception('mismatch {}({}) != {}'.format(
                        output_key, len(labels), n_sample))

                for i, label in enumerate(labels):
                    votes[i][label] += 1

            base = list() + labels_predict_last[mode]
            for i, vote in enumerate(votes):
                if base[i] != 0:
                    arg_max = int(np.argmax(vote))
                    if arg_max != 0 and vote[arg_max] >= config.tri_min_vote:
                        if base[i] != arg_max:
                            n_changed += 1
                        base[i] = arg_max

            print('n_exchanged within "HAS": {}'.format(n_changed))

            labels_predict_last[mode] = base
            res = basic_evaluate(gold=labels_gold[mode], pred=base)
            print(mode, '(after TRI)')
            print_evaluation(res)
            for col in res[CONFUSION_MATRIX]:
                print(','.join(map(str, col)))
            print()

        # 将判成HAS的样本修正为Others
        if config.others_enabled:
            votes = [0 for i in range(n_sample)]
            n_changed = 0

            for output_key in config.others:
                labels = list()
                for _mode in modes[mode]:
                    path = data_config.output_path(output_key, _mode,
                                                   LABEL_PREDICT)
                    labels += load_label_list(path)
                if len(labels) != n_sample:
                    raise Exception('mismatch {}({}) != {}'.format(
                        output_key, len(labels), n_sample))

                for i, label in enumerate(labels):
                    if label == 0:
                        votes[i] += 1
            if config.others_min_vote == 'all':
                min_vote = len(config.others)
            else:
                min_vote = int(config.others_min_vote)
            base = list() + labels_predict_last[mode]
            for i, vote in enumerate(votes):
                if vote >= min_vote:
                    if base[i] != 0:
                        n_changed += 1
                    base[i] = 0
            print('n_changed to "OTHERS": {}'.format(n_changed))

            labels_predict_last[mode] = base

            res = basic_evaluate(gold=labels_gold[mode], pred=base)
            print(mode, '(after OTHERS)')
            print_evaluation(res)
            for col in res[CONFUSION_MATRIX]:
                print(','.join(map(str, col)))
            print()

        if mode == FINAL and final_output is not None:
            first_line = open(data_config.path_train, 'r').readline()
            with open(final_output, 'w') as o_obj:
                o_obj.write(first_line)

                lines = open(
                    data_config.path_test_no_labels).read().strip().split('\n')
                lines = lines[1:]
                lines = list(map(lambda l: l.strip(), lines))

                labels = labels_predict_last[FINAL]
                labels = list(map(lambda l: label_str[l], labels))
                assert len(labels) == len(lines)

                for line, label in zip(lines, labels):
                    o_obj.write('{}\t{}\n'.format(line, label))
Exemple #17
0
def tf_idf(dataset_key,
           text_version,
           label_version=None,
           use_class_weights=True):
    """
    python algo/svm.py tf_idf semeval2018_task3 -t ek -l A
    """
    from sklearn import preprocessing
    from sklearn.preprocessing import Normalizer
    from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer, HashingVectorizer

    data_config = getattr(
        importlib.import_module('dataset.{}.config'.format(dataset_key)),
        'config')
    pos_label = None
    if dataset_key == 'semeval2018_task3' and label_version == 'A':
        pos_label = 1

    datasets = dict()
    for mode in [TRAIN, TEST]:
        datasets[mode] = {
            TEXT: load_text_list(data_config.path(mode, TEXT, text_version)),
            LABEL: load_label_list(data_config.path(mode, LABEL,
                                                    label_version))
        }

    vectorizers = {
        #TF_IDF: TfidfVectorizer(ngram_range=(1, 3), min_df=0.01),
        TF:
        CountVectorizer(
            #tokenizer=lambda x: filter(lambda _t: not _t.startswith('</'), x.split(' ')),
            tokenizer=lambda x: x.split(' '),
            ngram_range=(1, 3),
            min_df=0.02,
            max_features=1000),
        TF_C:
        TfidfVectorizer(ngram_range=(1, 1),
                        analyzer='char',
                        lowercase=False,
                        smooth_idf=True,
                        sublinear_tf=True)
    }

    for key, vectorizer in vectorizers.items():
        feat = vectorizer.fit_transform(datasets[TRAIN][TEXT])
        datasets[TRAIN][key] = feat

        feat = vectorizer.transform(datasets[TEST][TEXT])
        datasets[TEST][key] = feat

    if use_class_weights:
        class_weight = 'balanced'
    else:
        class_weight = None

    clf = svm.SVC(class_weight=class_weight)
    #clf = LogisticRegression(C=1., random_state=0, class_weight='balanced')

    X = hstack([datasets[TRAIN][k] for k in vectorizers.keys()])
    #scaler = preprocessing.StandardScaler()
    #X = scaler.fit_transform(X=X.todense())
    clf.fit(X=X, y=datasets[TRAIN][LABEL])

    for mode in [TRAIN, TEST]:
        X = hstack([datasets[mode][k] for k in vectorizers.keys()])
        #X = scaler.transform(X=X.todense())
        labels_predict = clf.predict(X=X)
        labels_gold = datasets[mode][LABEL]
        res = basic_evaluate(gold=labels_gold,
                             pred=labels_predict,
                             pos_label=pos_label)

        print(mode)
        print_evaluation(res)
        print()
Exemple #18
0
def train(text_version='ek',
          label_version=None,
          config_path='config93_naive.yaml'):
    """
    python -m algo.main93_v2 train
    python3 -m algo.main93_v2 train -c config_ntua93.yaml

    :param text_version: string
    :param label_version: string
    :param config_path: string
    :return:
    """
    config_data = yaml.load(open(config_path))

    output_key = '{}_{}_{}'.format(NNModel.name, text_version,
                                   int(time.time()))
    if label_version is not None:
        output_key = '{}_{}'.format(label_version, output_key)
    print('OUTPUT_KEY: {}'.format(output_key))

    # 准备输出路径的文件夹
    data_config.prepare_output_folder(output_key=output_key)
    data_config.prepare_model_folder(output_key=output_key)

    shutil.copy(config_path, data_config.output_path(output_key, ALL, CONFIG))

    w2v_key = '{}_{}'.format(config_data['word']['w2v_version'], text_version)
    w2v_model_path = data_config.path(ALL, WORD2VEC, w2v_key)
    vocab_train_path = data_config.path(TRAIN, VOCAB, text_version)

    # 加载字典集
    # 在模型中会采用所有模型中支持的词向量, 并为有足够出现次数的单词随机生成词向量
    vocab_meta_list = load_vocab_list(vocab_train_path)
    vocabs = [
        _meta['t'] for _meta in vocab_meta_list
        if _meta['tf'] >= config_data['word']['min_tf']
    ]

    # 加载词向量与相关数据
    lookup_table, vocab_id_mapping, embedding_dim = load_lookup_table2(
        w2v_model_path=w2v_model_path, vocabs=vocabs)
    json.dump(
        vocab_id_mapping,
        open(data_config.output_path(output_key, ALL, VOCAB_ID_MAPPING), 'w'))

    # 加载配置
    nn_config = NNConfig(config_data)
    train_config = TrainConfig(config_data['train'])
    early_stop_metric = train_config.early_stop_metric

    # 加载训练数据
    datasets, output_dim = load_dataset(vocab_id_mapping=vocab_id_mapping,
                                        max_seq_len=nn_config.seq_len,
                                        with_label=True,
                                        label_version=label_version)

    # 初始化数据集的检索
    index_iterators = {
        mode: IndexIterator(datasets[mode][LABEL_GOLD])
        for mode in [TRAIN, TEST]
    }
    # 按配置将训练数据切割成训练集和验证集
    index_iterators[TRAIN].split_train_valid(train_config.valid_rate)

    # 计算各个类的权重
    if train_config.use_class_weights:
        label_weight = {
            # 参考 sklearn 中 class_weight='balanced'的公式, 实验显示效果显着
            _label: float(index_iterators[TRAIN].n_sample()) /
            (index_iterators[TRAIN].dim * len(_index))
            for _label, _index in index_iterators[TRAIN].label_index.items()
        }
    else:
        label_weight = {
            _label: 1.
            for _label in range(index_iterators[TRAIN].dim)
        }

    # 基于加载的数据更新配置
    nn_config.set_embedding_dim(embedding_dim)
    nn_config.set_output_dim(output_dim)
    # 搭建神经网络
    nn = NNModel(config=nn_config)
    nn.build_neural_network(lookup_table=lookup_table)

    batch_size = train_config.batch_size
    fetches = {
        mode: {_key: nn.var(_key)
               for _key in fetch_key[mode]}
        for mode in [TRAIN, TEST]
    }
    last_eval = {TRAIN: None, VALID: None, TEST: None}

    model_output_prefix = data_config.model_path(key=output_key) + '/model'

    best_res = {mode: None for mode in [TRAIN, VALID]}
    no_update_count = {mode: 0 for mode in [TRAIN, VALID]}
    max_no_update_count = 10

    eval_history = {TRAIN: list(), DEV: list(), TEST: list()}

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver(tf.global_variables())

        dataset = datasets[TRAIN]
        index_iterator = index_iterators[TRAIN]

        # 训练开始 ##########################################################################
        for epoch in range(train_config.epoch):
            print('== epoch {} = {} ='.format(epoch, output_key))

            # 利用训练集进行训练
            print('TRAIN')
            n_sample = index_iterator.n_sample(TRAIN)
            labels_predict = list()
            labels_gold = list()

            for batch_index in index_iterator.iterate(batch_size,
                                                      mode=TRAIN,
                                                      shuffle=True):
                feed_dict = {
                    nn.var(_key): dataset[_key][batch_index]
                    for _key in feed_key[TRAIN]
                }
                feed_dict[nn.var(SAMPLE_WEIGHTS)] = list(
                    map(label_weight.get, feed_dict[nn.var(LABEL_GOLD)]))
                feed_dict[nn.var(TEST_MODE)] = 0

                if train_config.input_dropout_keep_prob < 1.:
                    for _key in [TID_0, TID_1, TID_2]:
                        var = nn.var(_key)
                        _tids = feed_dict[var]
                        feed_dict[var] = tid_dropout(
                            _tids, train_config.input_dropout_keep_prob)

                res = sess.run(fetches=fetches[TRAIN], feed_dict=feed_dict)

                labels_predict += res[LABEL_PREDICT].tolist()
                labels_gold += dataset[LABEL_GOLD][batch_index].tolist()

            labels_predict, labels_gold = labels_predict[:
                                                         n_sample], labels_gold[:
                                                                                n_sample]
            res = basic_evaluate(gold=labels_gold, pred=labels_predict)
            print_evaluation(res)
            eval_history[TRAIN].append(res)

            global_step = tf.train.global_step(sess, nn.var(GLOBAL_STEP))

            if train_config.valid_rate == 0.:
                if best_res[TRAIN] is None or res[
                        early_stop_metric] > best_res[TRAIN][early_stop_metric]:
                    best_res[TRAIN] = res
                    no_update_count[TRAIN] = 0
                    saver.save(sess,
                               save_path=model_output_prefix,
                               global_step=global_step)
                else:
                    no_update_count[TRAIN] += 1
            else:
                if best_res[TRAIN] is None or res[
                        early_stop_metric] > best_res[TRAIN][early_stop_metric]:
                    best_res[TRAIN] = res
                    no_update_count[TRAIN] = 0
                else:
                    no_update_count[TRAIN] += 1

                # 计算在验证集上的表现, 不更新模型参数
                print('VALID')
                n_sample = index_iterator.n_sample(VALID)
                labels_predict = list()
                labels_gold = list()

                for batch_index in index_iterator.iterate(batch_size,
                                                          mode=VALID,
                                                          shuffle=False):
                    feed_dict = {
                        nn.var(_key): dataset[_key][batch_index]
                        for _key in feed_key[TEST]
                    }
                    feed_dict[nn.var(TEST_MODE)] = 1
                    res = sess.run(fetches=fetches[TEST], feed_dict=feed_dict)
                    labels_predict += res[LABEL_PREDICT].tolist()
                    labels_gold += dataset[LABEL_GOLD][batch_index].tolist()

                labels_predict, labels_gold = labels_predict[:
                                                             n_sample], labels_gold[:
                                                                                    n_sample]
                res = basic_evaluate(gold=labels_gold, pred=labels_predict)
                eval_history[DEV].append(res)
                print_evaluation(res)

                # Early Stop
                if best_res[VALID] is None or res[
                        early_stop_metric] > best_res[VALID][early_stop_metric]:
                    saver.save(sess,
                               save_path=model_output_prefix,
                               global_step=global_step)
                    best_res[VALID] = res
                    no_update_count[VALID] = 0
                else:
                    no_update_count[VALID] += 1

            # eval test
            _mode = TEST
            _dataset = datasets[_mode]
            _index_iterator = index_iterators[_mode]
            _n_sample = _index_iterator.n_sample()

            labels_predict = list()
            labels_gold = list()
            for batch_index in _index_iterator.iterate(batch_size,
                                                       shuffle=False):
                feed_dict = {
                    nn.var(_key): _dataset[_key][batch_index]
                    for _key in feed_key[TEST]
                }
                feed_dict[nn.var(TEST_MODE)] = 1
                res = sess.run(fetches=fetches[TEST], feed_dict=feed_dict)
                labels_predict += res[LABEL_PREDICT].tolist()
                labels_gold += _dataset[LABEL_GOLD][batch_index].tolist()
            labels_predict, labels_gold = labels_predict[:
                                                         _n_sample], labels_gold[:
                                                                                 _n_sample]
            res = basic_evaluate(gold=labels_gold, pred=labels_predict)
            eval_history[TEST].append(res)

            if no_update_count[TRAIN] >= max_no_update_count:
                break

        # 训练结束 ##########################################################################
        # 确保输出文件夹存在

    print(
        '========================= BEST ROUND EVALUATION ========================='
    )

    json.dump(eval_history,
              open(data_config.output_path(output_key, 'eval', 'json'), 'w'))

    with tf.Session() as sess:
        prefix_checkpoint = tf.train.latest_checkpoint(
            data_config.model_path(key=output_key))
        saver = tf.train.import_meta_graph('{}.meta'.format(prefix_checkpoint))
        saver.restore(sess, prefix_checkpoint)

        nn = BaseNNModel(config=None)
        nn.set_graph(tf.get_default_graph())

        for mode in [TRAIN, TEST]:
            dataset = datasets[mode]
            index_iterator = index_iterators[mode]
            n_sample = index_iterator.n_sample()

            prob_predict = list()
            labels_predict = list()
            labels_gold = list()
            hidden_feats = list()

            for batch_index in index_iterator.iterate(batch_size,
                                                      shuffle=False):
                feed_dict = {
                    nn.var(_key): dataset[_key][batch_index]
                    for _key in feed_key[TEST]
                }
                feed_dict[nn.var(TEST_MODE)] = 1
                res = sess.run(fetches=fetches[TEST], feed_dict=feed_dict)
                prob_predict += res[PROB_PREDICT].tolist()
                labels_predict += res[LABEL_PREDICT].tolist()
                hidden_feats += res[HIDDEN_FEAT].tolist()
                labels_gold += dataset[LABEL_GOLD][batch_index].tolist()

            prob_predict = prob_predict[:n_sample]
            labels_predict = labels_predict[:n_sample]
            labels_gold = labels_gold[:n_sample]
            hidden_feats = hidden_feats[:n_sample]

            if mode == TEST:
                res = basic_evaluate(gold=labels_gold, pred=labels_predict)
                best_res[TEST] = res

            # 导出隐藏层
            with open(data_config.output_path(output_key, mode, HIDDEN_FEAT),
                      'w') as file_obj:
                for _feat in hidden_feats:
                    file_obj.write('\t'.join(map(str, _feat)) + '\n')
            # 导出预测的label
            with open(data_config.output_path(output_key, mode, LABEL_PREDICT),
                      'w') as file_obj:
                for _label in labels_predict:
                    file_obj.write('{}\n'.format(_label))
            with open(data_config.output_path(output_key, mode, PROB_PREDICT),
                      'w') as file_obj:
                for _prob in prob_predict:
                    file_obj.write('\t'.join(map(str, _prob)) + '\n')

        for mode in [TRAIN, VALID, TEST]:
            if mode == VALID and train_config.valid_rate == 0.:
                continue
            res = best_res[mode]
            print(mode)
            print_evaluation(res)

            json.dump(
                res,
                open(data_config.output_path(output_key, mode, EVALUATION),
                     'w'))
            print()

    test_score_list = map(lambda _item: _item['f1'], eval_history[TEST])
    print('best test f1 reached: {}'.format(max(test_score_list)))

    print('OUTPUT_KEY: {}'.format(output_key))
Exemple #19
0
def main(input_filename, config_path='e93.yaml', final_output=None):
    """
    [Usage]
    python3 -m algo.ensemble93 main -e mv --build-analysis
    """
    config_data = yaml.load(open(config_path))
    config = Config(data=config_data)

    labels_gold = dict()
    labels_predict = dict()
    labels_predict_last = dict()

    dataset = Processor.load_origin(input_filename)
    labels_predict[FINAL] = list(map(lambda _item: _item[-1], dataset))

    for mode in [
            FINAL,
    ]:
        if not mode == FINAL:
            res = basic_evaluate(gold=labels_gold[mode],
                                 pred=labels_predict[mode])
            print(mode)
            print_evaluation(res)
            for col in res[CONFUSION_MATRIX]:
                print(','.join(map(str, col)))
            print()

        n_sample = len(labels_predict[mode])
        labels_predict_last[mode] = labels_predict[mode]

        # 修正HAS
        if config.tri_enabled:
            n_changed = 0

            votes = [[0 for _ in range(4)] for _ in range(n_sample)]
            for output_key in config.tri:
                labels = list()
                for _mode in modes[mode]:
                    path = data_config.output_path(output_key, _mode,
                                                   LABEL_PREDICT)
                    labels += load_label_list(path)
                if len(labels) != n_sample:
                    raise Exception('mismatch {}({}) != {}'.format(
                        output_key, len(labels), n_sample))

                for i, label in enumerate(labels):
                    votes[i][label] += 1

            base = list() + labels_predict_last[mode]
            for i, vote in enumerate(votes):
                arg_max = int(np.argmax(vote))
                if arg_max == 0:
                    continue
                if base[i] != 0:
                    if vote[arg_max] >= config.tri_min_vote:
                        if base[i] != arg_max:
                            n_changed += 1
                        base[i] = arg_max
                elif vote[arg_max] >= config.tri_out_vote:
                    base[i] = arg_max
                    n_changed += 1

            print('n_exchanged within "HAS": {}'.format(n_changed))

            labels_predict_last[mode] = base
            if not mode == FINAL:
                res = basic_evaluate(gold=labels_gold[mode], pred=base)
                print(mode, '(after TRI)')
                print_evaluation(res)
                for col in res[CONFUSION_MATRIX]:
                    print(','.join(map(str, col)))
                print()

        # 将判成HAS的样本修正为Others
        if config.others_enabled:
            votes = [0 for _ in range(n_sample)]
            n_changed = 0

            for output_key in config.others:
                labels = list()
                for _mode in modes[mode]:
                    path = data_config.output_path(output_key, _mode,
                                                   LABEL_PREDICT)
                    labels += load_label_list(path)
                if len(labels) != n_sample:
                    raise Exception('mismatch {}({}) != {}'.format(
                        output_key, len(labels), n_sample))

                for i, label in enumerate(labels):
                    if label == 0:
                        votes[i] += 1
            if config.others_min_vote == 'all':
                min_vote = len(config.others)
            else:
                min_vote = int(config.others_min_vote)
            base = list() + labels_predict_last[mode]
            for i, vote in enumerate(votes):
                if vote >= min_vote:
                    if base[i] != 0:
                        n_changed += 1
                    base[i] = 0
            print('n_changed to "OTHERS": {}'.format(n_changed))

            labels_predict_last[mode] = base
            if not mode == FINAL:
                res = basic_evaluate(gold=labels_gold[mode], pred=base)
                print(mode, '(after OTHERS)')
                print_evaluation(res)
                for col in res[CONFUSION_MATRIX]:
                    print(','.join(map(str, col)))
                print()

        if mode == FINAL and final_output is not None:
            labels = labels_predict_last[FINAL]
            export_final(final_output, labels)