def dumpPickles(id): """ Persist memory intensive data structures, item similarities. """ print 'Pickle id %s' % (id) foldername = '../kfold_cluster_' + id + '/' print foldername cluster = algorithm.createPrefs(folder=foldername) for c in range(8): prefs = cluster[c] itemsim = algorithm.calculateSimilarItems(prefs, n=50) dumpname = "../pickle/" + id + "/oitemsim_" + str(c) + ".pickle" pickle.dump(itemsim, open(dumpname, "wb"))
def dumpPickles(id): """ Persist memory intensive data structures, item similarities. """ print 'Pickle id %s'%(id) foldername = '../kfold_cluster_' + id + '/' print foldername cluster = algorithm.createPrefs(folder=foldername) for c in range(8): prefs = cluster[c] itemsim = algorithm.calculateSimilarItems(prefs, n=50) dumpname = "../pickle/" +id + "/oitemsim_" + str(c) + ".pickle" pickle.dump(itemsim, open(dumpname, "wb"))
sparsity.caseone_doAverageFilling(mod_prefs, deleted_users) sparsity.saveDenseMatrix(mod_prefs,filename='..\\dataset\\cluster_testing10.tab') genetic_som.MAX_CLUSTERS = 10 genetic_som.MIN_CLUSTERS = 4 genetic_som.setFilename= '../dataset/cluster_testing10.tab' genetic_som.genetic(pop=20,max_evals=100,elites=4) #persist clusters onto files. UNVERIFIED genetic_som.persistClusters(genetic_som.getChromosomeList(genetic_som.final_pop), filename='../dataset/cluster_testing10.tab', folder='cluster',clustername='cluster_testing') """ cluster = algorithm.createPrefs(folder='../cluster/') #get cluster mean centroids. cluster_centroids = getClusterCentroids(cluster) for user in deleted_users: user_dict, removed_items = getRemovedPrefs(original_prefs[str(user)], 10) b = getBestCluster(user_dict) print "User %s Cluster %s" % (user, b) print "Prefs after removal of items: " print user_dict new_prefs = {} new_prefs = cluster[int(b)]
genetic_som.MAX_CLUSTERS = 10 genetic_som.MIN_CLUSTERS = 4 genetic_som.setFilename= '../dataset/three_dense_matrix.tab' genetic_som.genetic(pop=20,max_evals=100,elites=4) #persist clusters onto files. UNVERIFIED genetic_som.persistClusters(genetic_som.getChromosomeList(genetic_som.final_pop), filename='../dataset/three_dense_matrix.tab', folder='three',clustername='threecluster') """ cluster = algorithm.createPrefs(folder='../five/') testingPrefs = getTestPrefs(original_prefs, n=5) #use the modified prefs here. ostart = time.time() oitemsim = original.calculateSimilarItems(testingPrefs, n=50) ostop = time.time() #keep track of cluster prediction details colist = [] calist = [] coMAE = [] caMAE = [] for cid in range(8):
# training[str(key + 1)] = original_prefs[str(key+1)] """ sparsity.clustering_doFillUsingCBR(training) sparsity.clustering_doAverageFilling(training) sparsity.saveDenseMatrix(training,filename='..\\kfold\\kfold_testing_five.tab') genetic_som.persistClusters([0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1], filename='..\\kfold\\kfold_testing_five.tab', folder='kfold_cluster_five',clustername='kfold_cluster_testing_five') """ cid = 'four' cluster = algorithm.createPrefs(folder='../kfold_cluster_' + cid + '/') #get cluster mean centroids. cluster_centroids = getClusterCentroids(cluster) for user in validation: user_dict, removed_items = getRemovedPrefs(validation[user], 10) b = getBestCluster(user_dict) print "User %s Cluster %s" % (user, b) #print "Prefs after removal of items: " #print user_dict # new prefs for calculation after removing 10 items from validation set of the user. new_prefs = {} new_prefs = cluster[int(b)]
""" sparsity.clustering_doFillUsingCBR(training) sparsity.clustering_doAverageFilling(training) sparsity.saveDenseMatrix(training,filename='..\\kfold\\kfold_testing_five.tab') genetic_som.persistClusters([0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1], filename='..\\kfold\\kfold_testing_five.tab', folder='kfold_cluster_five',clustername='kfold_cluster_testing_five') """ cid = 'four' cluster = algorithm.createPrefs(folder='../kfold_cluster_' + cid +'/') #get cluster mean centroids. cluster_centroids = getClusterCentroids(cluster) for user in validation: user_dict, removed_items = getRemovedPrefs(validation[user], 10) b = getBestCluster(user_dict) print "User %s Cluster %s"%(user, b) #print "Prefs after removal of items: " #print user_dict # new prefs for calculation after removing 10 items from validation set of the user. new_prefs = {}
sparsity.caseone_doAverageFilling(mod_prefs, deleted_users) sparsity.saveDenseMatrix(mod_prefs,filename='..\\dataset\\cluster_testing10.tab') genetic_som.MAX_CLUSTERS = 10 genetic_som.MIN_CLUSTERS = 4 genetic_som.setFilename= '../dataset/cluster_testing10.tab' genetic_som.genetic(pop=20,max_evals=100,elites=4) #persist clusters onto files. UNVERIFIED genetic_som.persistClusters(genetic_som.getChromosomeList(genetic_som.final_pop), filename='../dataset/cluster_testing10.tab', folder='cluster',clustername='cluster_testing') """ cluster = algorithm.createPrefs(folder='../cluster/') #get cluster mean centroids. cluster_centroids = getClusterCentroids(cluster) for user in deleted_users: user_dict, removed_items = getRemovedPrefs(original_prefs[str(user)], 10) b = getBestCluster(user_dict) print "User %s Cluster %s"%(user, b) print "Prefs after removal of items: " print user_dict new_prefs = {} new_prefs = cluster[int(b)] new_prefs[str(user)] = user_dict