def get(env, args):
    """Run training or test.

    Args:
        env (gym.Env): openAI Gym environment with continuous action space
        args (argparse.Namespace): arguments including training settings

    """
    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.shape[0]

    if hyper_params["USE_HER"]:
        state_dim *= 2

    hidden_sizes_actor = hyper_params["NETWORK"]["ACTOR_HIDDEN_SIZES"]
    hidden_sizes_vf = hyper_params["NETWORK"]["VF_HIDDEN_SIZES"]
    hidden_sizes_qf = hyper_params["NETWORK"]["QF_HIDDEN_SIZES"]

    # target entropy
    target_entropy = -np.prod((action_dim, )).item()  # heuristic

    # create actor
    actor = TanhGaussianDistParams(input_size=state_dim,
                                   output_size=action_dim,
                                   hidden_sizes=hidden_sizes_actor).to(device)

    # create v_critic
    vf = MLP(input_size=state_dim, output_size=1,
             hidden_sizes=hidden_sizes_vf).to(device)
    vf_target = MLP(input_size=state_dim,
                    output_size=1,
                    hidden_sizes=hidden_sizes_vf).to(device)
    vf_target.load_state_dict(vf.state_dict())

    # create q_critic
    qf_1 = FlattenMLP(input_size=state_dim + action_dim,
                      output_size=1,
                      hidden_sizes=hidden_sizes_qf).to(device)
    qf_2 = FlattenMLP(input_size=state_dim + action_dim,
                      output_size=1,
                      hidden_sizes=hidden_sizes_qf).to(device)

    # create optimizers
    actor_optim = optim.Adam(
        actor.parameters(),
        lr=hyper_params["LR_ACTOR"],
        weight_decay=hyper_params["WEIGHT_DECAY"],
    )
    vf_optim = optim.Adam(
        vf.parameters(),
        lr=hyper_params["LR_VF"],
        weight_decay=hyper_params["WEIGHT_DECAY"],
    )
    qf_1_optim = optim.Adam(
        qf_1.parameters(),
        lr=hyper_params["LR_QF1"],
        weight_decay=hyper_params["WEIGHT_DECAY"],
    )
    qf_2_optim = optim.Adam(
        qf_2.parameters(),
        lr=hyper_params["LR_QF2"],
        weight_decay=hyper_params["WEIGHT_DECAY"],
    )

    # make tuples to create an agent
    models = (actor, vf, vf_target, qf_1, qf_2)
    optims = (actor_optim, vf_optim, qf_1_optim, qf_2_optim)

    # HER
    her = LunarLanderContinuousHER() if hyper_params["USE_HER"] else None

    # create an agent
    return Agent(env, args, hyper_params, models, optims, target_entropy, her)
Exemple #2
0
def run(env: gym.Env, args: argparse.Namespace, state_dim: int,
        action_dim: int):
    """Run training or test.

    Args:
        env (gym.Env): openAI Gym environment with continuous action space
        args (argparse.Namespace): arguments including training settings
        state_dim (int): dimension of states
        action_dim (int): dimension of actions

    """
    hidden_sizes_actor = [400, 300]
    hidden_sizes_critic = [400, 300]

    # create actor
    actor = MLP(
        input_size=state_dim,
        output_size=action_dim,
        hidden_sizes=hidden_sizes_actor,
        output_activation=torch.tanh,
    ).to(device)

    actor_target = MLP(
        input_size=state_dim,
        output_size=action_dim,
        hidden_sizes=hidden_sizes_actor,
        output_activation=torch.tanh,
    ).to(device)

    actor_target.load_state_dict(actor.state_dict())

    # create critic
    critic1 = FlattenMLP(
        input_size=state_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes_critic,
    ).to(device)

    critic2 = FlattenMLP(
        input_size=state_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes_critic,
    ).to(device)

    critic_target1 = FlattenMLP(
        input_size=state_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes_critic,
    ).to(device)

    critic_target2 = FlattenMLP(
        input_size=state_dim + action_dim,
        output_size=1,
        hidden_sizes=hidden_sizes_critic,
    ).to(device)

    critic_target1.load_state_dict(critic1.state_dict())
    critic_target2.load_state_dict(critic2.state_dict())

    # concat critic parameters to use one optim
    critic_parameters = list(critic1.parameters()) + list(critic2.parameters())

    # create optimizers
    actor_optim = optim.Adam(
        actor.parameters(),
        lr=hyper_params["LR_ACTOR"],
        weight_decay=hyper_params["WEIGHT_DECAY"],
    )

    critic_optim = optim.Adam(
        critic_parameters,
        lr=hyper_params["LR_CRITIC"],
        weight_decay=hyper_params["WEIGHT_DECAY"],
    )

    # noise instance to make randomness of action
    exploration_noise = GaussianNoise(action_dim,
                                      hyper_params["EXPLORATION_NOISE"],
                                      hyper_params["EXPLORATION_NOISE"])

    target_policy_noise = GaussianNoise(
        action_dim,
        hyper_params["TARGET_POLICY_NOISE"],
        hyper_params["TARGET_POLICY_NOISE"],
    )

    # make tuples to create an agent
    models = (actor, actor_target, critic1, critic2, critic_target1,
              critic_target2)
    optims = (actor_optim, critic_optim)

    # create an agent
    agent = TD3Agent(env, args, hyper_params, models, optims,
                     exploration_noise, target_policy_noise)

    # run
    if args.test:
        agent.test()
    else:
        agent.train()
Exemple #3
0
def run(env: gym.Env, args: argparse.Namespace, state_dim: int,
        action_dim: int):
    """Run training or test.

    Args:
        env (gym.Env): openAI Gym environment with continuous action space
        args (argparse.Namespace): arguments including training settings
        state_dim (int): dimension of states
        action_dim (int): dimension of actions

    """
    hidden_sizes_actor = [256, 256]
    hidden_sizes_vf = [256, 256]
    hidden_sizes_qf = [256, 256]

    # target entropy
    target_entropy = -np.prod((action_dim, )).item()  # heuristic

    # create actor
    actor = TanhGaussianDistParams(input_size=state_dim,
                                   output_size=action_dim,
                                   hidden_sizes=hidden_sizes_actor).to(device)

    # create v_critic
    vf = MLP(input_size=state_dim, output_size=1,
             hidden_sizes=hidden_sizes_vf).to(device)
    vf_target = MLP(input_size=state_dim,
                    output_size=1,
                    hidden_sizes=hidden_sizes_vf).to(device)
    vf_target.load_state_dict(vf.state_dict())

    # create q_critic
    qf_1 = FlattenMLP(input_size=state_dim + action_dim,
                      output_size=1,
                      hidden_sizes=hidden_sizes_qf).to(device)
    qf_2 = FlattenMLP(input_size=state_dim + action_dim,
                      output_size=1,
                      hidden_sizes=hidden_sizes_qf).to(device)

    # create optimizers
    actor_optim = optim.Adam(
        actor.parameters(),
        lr=hyper_params["LR_ACTOR"],
        weight_decay=hyper_params["LAMBDA2"],
    )
    vf_optim = optim.Adam(vf.parameters(),
                          lr=hyper_params["LR_VF"],
                          weight_decay=hyper_params["LAMBDA2"])
    qf_1_optim = optim.Adam(
        qf_1.parameters(),
        lr=hyper_params["LR_QF1"],
        weight_decay=hyper_params["LAMBDA2"],
    )
    qf_2_optim = optim.Adam(
        qf_2.parameters(),
        lr=hyper_params["LR_QF2"],
        weight_decay=hyper_params["LAMBDA2"],
    )

    # make tuples to create an agent
    models = (actor, vf, vf_target, qf_1, qf_2)
    optims = (actor_optim, vf_optim, qf_1_optim, qf_2_optim)

    # create an agent
    agent = SACfDAgent(env, args, hyper_params, models, optims, target_entropy)

    # run
    if args.test:
        agent.test()
    else:
        agent.train()