def test_paa(self): order = 'Execute paa on timeserie at 5 points' data = response(self, order) self.assertEqual(data['queryResult']['intent']['displayName'], 'DoDimensionality') self.assertGreater(data['queryResult']['intentDetectionConfidence'], 0.85) self.assertEqual(data['queryResult']['parameters']['operation'], 'paa') self.assertEqual(data['queryResult']['parameters']['Dataset'], 'timeserie') self.assertEqual(data['queryResult']['parameters']['number'], 5) tt = pd.DataFrame([0, 0.1, -0.1, 5.0, 6.0, 7.0, 8.1, 9.0, 9.0, 9.0]) self.workspace.save_dataset('timeserie', tt) al.do_dimensionality(data['queryResult']['parameters']) paa_result = al.Workspace().get_dataset("paa0") val = paa_result.values expected = [0.05, 2.45, 6.5, 8.55, 9.0] for i in range(len(expected)): self.assertAlmostEqual(val[i], expected[i], delta=self.DELTA)
def test_visvalingam(self): order = 'Execute visvalingam on timeserie at 5 points' data = response(self, order) self.assertEqual(data['queryResult']['intent']['displayName'], 'DoDimensionality') self.assertGreater(data['queryResult']['intentDetectionConfidence'], 0.85) self.assertEqual(data['queryResult']['parameters']['operation'], 'visvalingam') self.assertEqual(data['queryResult']['parameters']['Dataset'], 'timeserie') self.assertEqual(data['queryResult']['parameters']['number'], 5) tt = pd.DataFrame([0, 0.1, -0.1, 5.0, 6.0, 7.0, 8.1, 9.0, 9.0, 9.0]) self.workspace.save_dataset('timeserie', tt) al.do_dimensionality(data['queryResult']['parameters']) visvalingam_result = al.Workspace().get_dataset("visvalingam0") ind = visvalingam_result.index.to_list() val = visvalingam_result.values expected = [[0, 2, 3, 6, 9], [0, -0.1, 5.0, 9.0, 9.0]] for i in range(len(expected)): self.assertAlmostEqual(ind[i], expected[0][i], delta=self.DELTA) self.assertAlmostEqual(val[i], expected[1][i], delta=self.DELTA)
def test_ramer_douglas_peucker(self): order = 'Execute ramerDouglasPeucker on timeserie with an epsilon of 1.0' data = response(self, order) self.assertEqual(data['queryResult']['intent']['displayName'], 'DoDimensionality') self.assertGreater(data['queryResult']['intentDetectionConfidence'], 0.85) self.assertEqual(data['queryResult']['parameters']['operation'], 'ramer_douglas_peucker') self.assertEqual(data['queryResult']['parameters']['Dataset'], 'timeserie') self.assertEqual(data['queryResult']['parameters']['number'], 1.0) tt = pd.DataFrame([0, 0.1, -0.1, 5.0, 6.0, 7.0, 8.1, 9.0, 9.0, 9.0]) self.workspace.save_dataset('timeserie', tt) al.do_dimensionality(data['queryResult']['parameters']) ramer_douglas_peucker_result = al.Workspace().get_dataset("RDP0") ind = ramer_douglas_peucker_result.index.to_list() val = ramer_douglas_peucker_result.values expected = [[0, 2, 3, 6, 9], [0, -0.1, 5.0, 8.1, 9.0]] for i in range(len(expected)): self.assertAlmostEqual(ind[i], expected[0][i], delta=self.DELTA) self.assertAlmostEqual(val[i], expected[1][i], delta=self.DELTA)
def detect_intent_text(project_id, session_id, text, language_code): """ Detects the intent of the text and execute some instruction Using the same `session_id` between requests allows continuation of the conversation. :param project_id: ID of the project :param session_id: ID of the session :param text: The text input for analyse :param language_code: Code of the language """ session_client = dialogflow.SessionsClient() session = session_client.session_path(project_id, session_id) print('Session path: {}\n'.format(session)) text_input = dialogflow.types.TextInput(text=text, language_code=language_code) query_input = dialogflow.types.QueryInput(text=text_input) response = session_client.detect_intent(session=session, query_input=query_input) """Conversion of Protocol Buffer to JSON""" response_json = pbjson.MessageToJson(response) data = json.loads(response_json) parameters = data['queryResult']['parameters'] print(parameters) print('=' * 20) print('DEBUG: Query text: {}'.format(response.query_result.query_text)) print('DEBUG: Detected intent: {} (confidence: {})\n'.format( response.query_result.intent.display_name, response.query_result.intent_detection_confidence)) try: if response.query_result.intent.display_name == 'RandomDataset': al.create_dataset(parameters) elif response.query_result.intent.display_name == 'LoadDataset': al.load_dataset(parameters) elif response.query_result.intent.display_name == 'ShowWorkspace': workspace = al.Workspace() print(list(workspace.get_all_dataset())) elif response.query_result.intent.display_name == 'GetBackend': al.get_library_backend(parameters['library']) elif response.query_result.intent.display_name == 'SetBackend': al.set_library_backend(parameters) elif response.query_result.intent.display_name == 'Exit - yes': al.exiting_yes(response.query_result.fulfillment_text) elif response.query_result.intent.display_name == 'Exit - no': al.exiting_no(response.query_result.fulfillment_text) elif not re.search("^Default|Exit", response.query_result.intent.display_name): if not parameters.get("Dataset"): parameters['Dataset'] = 'current' if al.check_dataset(parameters): if response.query_result.intent.display_name == 'ChangeName': al.change_name(parameters) elif response.query_result.intent.display_name == 'ShowResult': al.execute_plot(parameters) elif response.query_result.intent.display_name == 'PrintResult': al.execute_print(parameters) elif response.query_result.intent.display_name == 'SubDatasetRow': al.get_subdataset_rows(parameters) elif response.query_result.intent.display_name == 'SubDatasetCols': al.get_subdataset_columns(parameters) elif response.query_result.intent.display_name == 'JoinByCols': al.join_by_cols(parameters) elif response.query_result.intent.display_name == 'JoinByRows': al.join_by_rows(parameters) elif response.query_result.intent.display_name == 'SplitByCols': al.split_by_cols(parameters) elif response.query_result.intent.display_name == 'SplitByRows': al.split_by_rows(parameters) elif response.query_result.intent.display_name == 'DoDimensionality': al.do_dimensionality(parameters) elif response.query_result.intent.display_name == 'DoClustering': al.do_clustering(parameters) elif response.query_result.intent.display_name == 'DoMatrix_Stomp': al.do_matrix(parameters) elif response.query_result.intent.display_name == 'DoMatrix_Best': al.do_matrix(parameters) elif response.query_result.intent.display_name == 'DoNormalization': al.do_normalization(parameters) elif response.query_result.intent.display_name == 'DoFeatures': al.do_features(parameters) else: if parameters["Dataset"] != 'current': print("The object " + parameters["Dataset"] + " does not exist.") al.voice("The object " + parameters["Dataset"] + " does not exist.") else: print("There is no loaded dataset.") al.voice("There is no loaded dataset.") print("Please, load a dataset or use a previously stored one before using any function.") al.voice("Please, load a dataset or use a previously stored one before using any function.") return print('DEBUG: Fulfillment text: {}\n'.format(response.query_result.fulfillment_text)) if response.query_result.fulfillment_text: al.voice(response.query_result.fulfillment_text) except Exception as e: print('An error in the execution has been raised.') print(e) return