Exemple #1
0
class TestSoftmax(unittest.TestCase):
    def setUp(self):
        torch.manual_seed(2)
        self.model = nn.Sequential(
            nn.Linear(STATE_DIM, ACTIONS)
        )
        optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1)
        self.policy = SoftmaxPolicy(self.model, optimizer)

    def test_run(self):
        state1 = State(torch.randn(1, STATE_DIM))
        dist1 = self.policy(state1)
        action1 = dist1.sample()
        log_prob1 = dist1.log_prob(action1)
        self.assertEqual(action1.item(), 0)

        state2 = State(torch.randn(1, STATE_DIM))
        dist2 = self.policy(state2)
        action2 = dist2.sample()
        log_prob2 = dist2.log_prob(action2)
        self.assertEqual(action2.item(), 2)

        loss = -(torch.tensor([-1, 1000000]) * torch.cat((log_prob1, log_prob2))).mean()
        self.policy.reinforce(loss)

        state3 = State(torch.randn(1, STATE_DIM))
        dist3 = self.policy(state3)
        action3 = dist3.sample()
        self.assertEqual(action3.item(), 2)

    def test_multi_action(self):
        states = State(torch.randn(3, STATE_DIM))
        actions = self.policy(states).sample()
        tt.assert_equal(actions, torch.tensor([2, 2, 0]))

    def test_list(self):
        torch.manual_seed(1)
        states = State(torch.randn(3, STATE_DIM), torch.tensor([1, 0, 1]))
        dist = self.policy(states)
        actions = dist.sample()
        log_probs = dist.log_prob(actions)
        tt.assert_equal(actions, torch.tensor([1, 2, 1]))
        loss = -(torch.tensor([[1, 2, 3]]) * log_probs).mean()
        self.policy.reinforce(loss)

    def test_reinforce(self):
        def loss(log_probs):
            return -log_probs.mean()

        states = State(torch.randn(3, STATE_DIM), torch.tensor([1, 1, 1]))
        actions = self.policy.eval(states).sample()

        # notice the values increase with each successive reinforce
        log_probs = self.policy(states).log_prob(actions)
        tt.assert_almost_equal(log_probs, torch.tensor([-0.84, -0.62, -0.757]), decimal=3)
        self.policy.reinforce(loss(log_probs))
        log_probs = self.policy(states).log_prob(actions)
        tt.assert_almost_equal(log_probs, torch.tensor([-0.811, -0.561, -0.701]), decimal=3)
        self.policy.reinforce(loss(log_probs))
        log_probs = self.policy(states).log_prob(actions)
        tt.assert_almost_equal(log_probs, torch.tensor([-0.785, -0.51, -0.651]), decimal=3)
class TestSoftmax(unittest.TestCase):
    def setUp(self):
        torch.manual_seed(2)
        self.model = nn.Sequential(nn.Linear(STATE_DIM, ACTIONS))
        optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1)
        self.policy = SoftmaxPolicy(self.model, optimizer, ACTIONS)

    def test_run(self):
        state = State(torch.randn(1, STATE_DIM))
        action = self.policy(state)
        self.assertEqual(action.item(), 0)
        state = State(torch.randn(1, STATE_DIM))
        action = self.policy(state)
        self.assertEqual(action.item(), 2)
        self.policy.reinforce(torch.tensor([-1, 1000000]).float())
        action = self.policy(state)
        self.assertEqual(action.item(), 2)

    def test_multi_action(self):
        states = State(torch.randn(3, STATE_DIM))
        actions = self.policy(states)
        tt.assert_equal(actions, torch.tensor([2, 2, 0]))
        self.policy.reinforce(torch.tensor([[1, 2, 3]]).float())

    def test_multi_batch_reinforce(self):
        self.policy(State(torch.randn(2, STATE_DIM)))
        self.policy(State(torch.randn(2, STATE_DIM)))
        self.policy(State(torch.randn(2, STATE_DIM)))
        self.policy.reinforce(torch.tensor([1, 2, 3, 4]).float())
        self.policy.reinforce(torch.tensor([1, 2]).float())
        with self.assertRaises(Exception):
            self.policy.reinforce(torch.tensor([1, 2]).float())

    def test_list(self):
        torch.manual_seed(1)
        states = State(torch.randn(3, STATE_DIM), torch.tensor([1, 0, 1]))
        actions = self.policy(states)
        tt.assert_equal(actions, torch.tensor([1, 2, 1]))
        self.policy.reinforce(torch.tensor([[1, 2, 3]]).float())

    def test_action_prob(self):
        torch.manual_seed(1)
        states = State(torch.randn(3, STATE_DIM), torch.tensor([1, 0, 1]))
        with torch.no_grad():
            actions = self.policy(states)
        probs = self.policy(states, action=actions)
        tt.assert_almost_equal(probs,
                               torch.tensor([0.204, 0.333, 0.217]),
                               decimal=3)
Exemple #3
0
class TestSoftmax(unittest.TestCase):
    def setUp(self):
        torch.manual_seed(2)
        self.model = nn.Sequential(nn.Linear(STATE_DIM, ACTIONS))
        optimizer = torch.optim.SGD(self.model.parameters(), lr=0.1)
        self.policy = SoftmaxPolicy(self.model, optimizer, ACTIONS)

    def test_run(self):
        state = State(torch.randn(1, STATE_DIM))
        action = self.policy(state)
        self.assertEqual(action.item(), 0)
        state = State(torch.randn(1, STATE_DIM))
        action = self.policy(state)
        self.assertEqual(action.item(), 2)
        self.policy.reinforce(torch.tensor([-1, 1000000]).float())
        action = self.policy(state)
        self.assertEqual(action.item(), 2)

    def test_multi_action(self):
        states = State(torch.randn(3, STATE_DIM))
        actions = self.policy(states)
        tt.assert_equal(actions, torch.tensor([2, 2, 0]))
        self.policy.reinforce(torch.tensor([[1, 2, 3]]).float())

    def test_multi_batch_reinforce(self):
        self.policy(State(torch.randn(2, STATE_DIM)))
        self.policy(State(torch.randn(2, STATE_DIM)))
        self.policy(State(torch.randn(2, STATE_DIM)))
        self.policy.reinforce(torch.tensor([1, 2, 3, 4]).float())
        self.policy.reinforce(torch.tensor([1, 2]).float())
        with self.assertRaises(Exception):
            self.policy.reinforce(torch.tensor([1, 2]).float())

    def test_list(self):
        torch.manual_seed(1)
        states = State(torch.randn(3, STATE_DIM), torch.tensor([1, 0, 1]))
        actions = self.policy(states)
        tt.assert_equal(actions, torch.tensor([1, 2, 1]))
        self.policy.reinforce(torch.tensor([[1, 2, 3]]).float())

    def test_action_prob(self):
        torch.manual_seed(1)
        states = State(torch.randn(3, STATE_DIM), torch.tensor([1, 0, 1]))
        with torch.no_grad():
            actions = self.policy(states)
        log_probs = self.policy(states, action=actions)
        tt.assert_almost_equal(log_probs,
                               torch.tensor([-1.59, -1.099, -1.528]),
                               decimal=3)

    def test_custom_loss(self):
        def loss(log_probs):
            return -log_probs.mean()

        states = State(torch.randn(3, STATE_DIM), torch.tensor([1, 1, 1]))
        actions = self.policy.eval(states)

        # notice the values increase with each successive reinforce
        log_probs = self.policy(states, actions)
        tt.assert_almost_equal(log_probs,
                               torch.tensor([-0.84, -0.62, -0.757]),
                               decimal=3)
        self.policy.reinforce(loss)
        log_probs = self.policy(states, actions)
        tt.assert_almost_equal(log_probs,
                               torch.tensor([-0.811, -0.561, -0.701]),
                               decimal=3)
        self.policy.reinforce(loss)
        log_probs = self.policy(states, actions)
        tt.assert_almost_equal(log_probs,
                               torch.tensor([-0.785, -0.51, -0.651]),
                               decimal=3)
class DiversityLearner:
    def __init__(
        self,
        model_fn,
        model_features,
        logger,
        device,
        num_targets,
        max_learn_steps,
        num_actions,
        obs_preproc,
        discount_factor=0.99,
        entropy_target=-2,
        lr_value=1e-3,
        lr_pi=1e-4,
        # Training settings
        polyak_rate=0.005,
        # Replay Buffer settings
        replay_start_size=5000,
        replay_buffer_size=1e6,
        # Exploration settings
        temperature_initial=0.1,
        lr_temperature=1e-5,
        entropy_target_scaling=1.,
    ):
        self.writer = writer = DummyWriter()
        eps = 1e-5
        self.discount_factor = discount_factor
        self.entropy_target = entropy_target
        self.temperature = temperature_initial
        self.lr_temperature = lr_temperature
        self.logger = logger
        self.device = device
        self.num_targets = num_targets
        self.max_learn_steps = max_learn_steps
        self.num_actions = num_actions

        final_anneal_step = (max_learn_steps)
        self.policy = DiversityPolicy(model_fn, model_features, num_actions,
                                      num_targets, obs_preproc, device)
        self.policy = self.policy.to(device)
        self.obs_preproc = obs_preproc
        policy_optimizer = Adam(self.policy.parameters(), lr=lr_pi, eps=eps)
        self.policy_learner = SoftmaxPolicy(self.policy,
                                            policy_optimizer,
                                            scheduler=CosineAnnealingLR(
                                                policy_optimizer,
                                                final_anneal_step),
                                            writer=writer)

        value_feature_model = model_fn().to(device)
        q_models = [
            DuelingQValueLayer(model_features, num_targets,
                               num_actions).to(device) for i in range(2)
        ]
        v_model = ValueLayer(model_features, num_targets,
                             num_actions).to(device)
        feature_optimizer = Adam(value_feature_model.parameters(),
                                 lr=lr_value,
                                 eps=eps)
        q_optimizers = [
            Adam(q_models[i].parameters(), lr=lr_value, eps=eps)
            for i in range(2)
        ]
        v_optimizer = Adam(v_model.parameters(), lr=lr_value, eps=eps)

        self.features = FeatureNetwork(
            value_feature_model,
            feature_optimizer,
            scheduler=CosineAnnealingLR(
                feature_optimizer,
                final_anneal_step,
            ),
            # clip_grad=clip_grad,
            writer=writer)

        self.qs = [
            QContinuous(q_models[i],
                        q_optimizers[i],
                        scheduler=CosineAnnealingLR(q_optimizers[i],
                                                    final_anneal_step),
                        writer=writer,
                        name=f'q_{i}') for i in range(2)
        ]

        self.v = VNetwork(
            v_model,
            v_optimizer,
            scheduler=CosineAnnealingLR(v_optimizer, final_anneal_step),
            target=PolyakTarget(polyak_rate),
            writer=writer,
            name='v',
        )

    def learn_step(self, idxs, transition_batch, weights):
        Otm1, targ_vec, old_action, env_rew, done, Ot = transition_batch
        batch_size = len(Ot)
        obsm1 = self.obs_preproc(torch.tensor(Otm1, device=self.device))
        targ_vec = torch.tensor(targ_vec, device=self.device)
        actions = torch.tensor(old_action, device=self.device)
        rewards = torch.tensor(env_rew, device=self.device)
        done = torch.tensor(done, device=self.device).float().to(self.device)
        next_obs = self.obs_preproc(torch.tensor(Ot, device=self.device))
        weights = torch.tensor(weights, device=self.device)
        # assert (not (Otm1 == Ot).all())
        # print(self.device)
        states = StateArray(
            {
                'observation': obsm1,
                'reward': rewards,
                'done': done,
            },
            shape=(batch_size, ))
        # print(states['mask'])
        next_states = StateArray(
            {
                'observation': obsm1,
                'reward': torch.zeros(batch_size, device=self.device),
                'done': torch.zeros(batch_size, device=self.device),
                'mask': torch.ones(batch_size, device=self.device),
            },
            shape=(batch_size, ))

        # prediction_reward = self.predictor(Ot) * targ_vec
        with torch.no_grad():
            distribution = self.policy_learner(states)
            _log_probs = distribution.log_prob(actions).detach().squeeze()
        value_feature1 = self.features(states)
        value_feature2 = self.features(next_states)
        _actions = distribution.sample()  #torch.argmax(_log_probs, axis=-1)
        q_targets = rewards + self.discount_factor * self.v.target(
            value_feature2).detach()
        # print(value_feature1)
        v_targets = torch.min(
            self.qs[0].target(value_feature1, _actions),
            self.qs[1].target(value_feature1, _actions),
        ) - self.temperature * _log_probs
        # update Q and V-functions
        # print(q_targets.min(),torch.min(
        #     self.qs[0].target(value_feature1, _actions),
        #     self.qs[1].target(value_feature1, _actions),
        # ))
        for i in range(2):
            self.qs[i].reinforce(
                mse_loss(self.qs[i](value_feature1, actions), q_targets))
        # print(self.v(value_feature1).shape)
        # print(v_targets.shape)
        self.v.reinforce(mse_loss(self.v(value_feature1), v_targets))

        # update policy
        distribution = self.policy_learner(states)
        _actions2 = distribution.sample()
        _log_probs2 = distribution.log_prob(_actions2).squeeze()
        loss = (-self.qs[0](value_feature1, _actions2).detach() +
                self.temperature * _log_probs2).mean()
        self.policy_learner.reinforce(loss)
        self.features.reinforce()
        self.qs[0].zero_grad()

        # adjust temperature
        temperature_grad = (_log_probs + self.entropy_target).mean()
        self.temperature += self.lr_temperature * temperature_grad.detach(
        ).cpu().numpy()