Exemple #1
0
def tajima_d(ac, pos=None, start=None, stop=None):
    """Calculate the value of Tajima's D over a given region.

    Parameters
    ----------
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    pos : array_like, int, shape (n_items,), optional
        Variant positions, using 1-based coordinates, in ascending order.
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).

    Returns
    -------
    D : float

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                    [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> allel.stats.tajima_d(ac)
    3.1445848780213814
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> allel.stats.tajima_d(ac, pos=pos, start=7, stop=25)
    3.8779735196179366

    """

    # check inputs
    if not hasattr(ac, "count_segregating"):
        ac = AlleleCountsArray(ac, copy=False)

    # deal with subregion
    if pos is not None and (start is not None or stop is not None):
        if not isinstance(pos, SortedIndex):
            pos = SortedIndex(pos, copy=False)
        loc = pos.locate_range(start, stop)
        ac = ac[loc]

    # assume number of chromosomes sampled is constant for all variants
    n = ac.sum(axis=1).max()

    # count segregating variants
    S = ac.count_segregating()

    # (n-1)th harmonic number
    a1 = np.sum(1 / np.arange(1, n))

    # calculate Watterson's theta (absolute value)
    theta_hat_w_abs = S / a1

    # calculate mean pairwise difference
    mpd = mean_pairwise_difference(ac, fill=0)

    # calculate theta_hat pi (sum differences over variants)
    theta_hat_pi_abs = np.sum(mpd)

    # N.B., both theta estimates are usually divided by the number of
    # (accessible) bases but here we want the absolute difference
    d = theta_hat_pi_abs - theta_hat_w_abs

    # calculate the denominator (standard deviation)
    a2 = np.sum(1 / (np.arange(1, n) ** 2))
    b1 = (n + 1) / (3 * (n - 1))
    b2 = 2 * (n ** 2 + n + 3) / (9 * n * (n - 1))
    c1 = b1 - (1 / a1)
    c2 = b2 - ((n + 2) / (a1 * n)) + (a2 / (a1 ** 2))
    e1 = c1 / a1
    e2 = c2 / (a1 ** 2 + a2)
    d_stdev = np.sqrt((e1 * S) + (e2 * S * (S - 1)))

    # finally calculate Tajima's D
    D = d / d_stdev

    return D
Exemple #2
0
def sequence_divergence(pos, ac1, ac2, an1=None, an2=None, start=None, stop=None, is_accessible=None):
    """Estimate nucleotide divergence between two populations within a
    given region.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac1 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the first population.
    ac2 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the second population.
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.

    Returns
    -------

    Dxy : ndarray, float, shape (n_windows,)
        Nucleotide divergence.

    Examples
    --------

    Simplest case, two haplotypes in each population::

        >>> import allel
        >>> h = allel.HaplotypeArray([[0, 0, 0, 0],
        ...                           [0, 0, 0, 1],
        ...                           [0, 0, 1, 1],
        ...                           [0, 1, 1, 1],
        ...                           [1, 1, 1, 1],
        ...                           [0, 0, 1, 2],
        ...                           [0, 1, 1, 2],
        ...                           [0, 1, -1, -1],
        ...                           [-1, -1, -1, -1]])
        >>> ac1 = h.count_alleles(subpop=[0, 1])
        >>> ac2 = h.count_alleles(subpop=[2, 3])
        >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
        >>> dxy = sequence_divergence(pos, ac1, ac2, start=1, stop=31)
        >>> dxy
        0.12096774193548387

    """

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    ac1 = asarray_ndim(ac1, 2)
    ac2 = asarray_ndim(ac2, 2)
    if an1 is not None:
        an1 = asarray_ndim(an1, 1)
    if an2 is not None:
        an2 = asarray_ndim(an2, 1)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)

    # handle start/stop
    if start is not None or stop is not None:
        loc = pos.locate_range(start, stop)
        pos = pos[loc]
        ac1 = ac1[loc]
        ac2 = ac2[loc]
        if an1 is not None:
            an1 = an1[loc]
        if an2 is not None:
            an2 = an2[loc]
    if start is None:
        start = pos[0]
    if stop is None:
        stop = pos[-1]

    # calculate mean pairwise difference between the two populations
    mpd = mean_pairwise_difference_between(ac1, ac2, an1=an1, an2=an2, fill=0)

    # sum differences over variants
    mpd_sum = np.sum(mpd)

    # calculate value per base, N.B., expect pos is 1-based
    if is_accessible is None:
        n_bases = stop - start + 1
    else:
        n_bases = np.count_nonzero(is_accessible[start - 1 : stop])

    dxy = mpd_sum / n_bases

    return dxy
Exemple #3
0
def watterson_theta(pos, ac, start=None, stop=None, is_accessible=None):
    """Calculate the value of Watterson's estimator over a given region.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.

    Returns
    -------

    theta_hat_w : float
        Watterson's estimator (theta hat per base).

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                          [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> theta_hat_w = allel.stats.watterson_theta(pos, ac, start=1, stop=31)
    >>> theta_hat_w
    0.10557184750733138

    """

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
    if not hasattr(ac, "count_segregating"):
        ac = AlleleCountsArray(ac, copy=False)

    # deal with subregion
    if start is not None or stop is not None:
        loc = pos.locate_range(start, stop)
        pos = pos[loc]
        ac = ac[loc]
    if start is None:
        start = pos[0]
    if stop is None:
        stop = pos[-1]

    # count segregating variants
    S = ac.count_segregating()

    # assume number of chromosomes sampled is constant for all variants
    n = ac.sum(axis=1).max()

    # (n-1)th harmonic number
    a1 = np.sum(1 / np.arange(1, n))

    # calculate absolute value
    theta_hat_w_abs = S / a1

    # calculate value per base
    if is_accessible is None:
        n_bases = stop - start + 1
    else:
        n_bases = np.count_nonzero(is_accessible[start - 1 : stop])
    theta_hat_w = theta_hat_w_abs / n_bases

    return theta_hat_w
Exemple #4
0
def sequence_divergence(pos,
                        ac1,
                        ac2,
                        an1=None,
                        an2=None,
                        start=None,
                        stop=None,
                        is_accessible=None):
    """Estimate nucleotide divergence between two populations within a
    given region, which is the average proportion of sites (including
    monomorphic sites not present in the data) that differ between randomly
    chosen pairs of chromosomes, one from each population.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac1 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the first population.
    ac2 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array for the second population.
    an1 : array_like, int, shape (n_variants,), optional
        Allele numbers for the first population. If not provided, will be
        calculated from `ac1`.
    an2 : array_like, int, shape (n_variants,), optional
        Allele numbers for the second population. If not provided, will be
        calculated from `ac2`.
    start : int, optional
        The position at which to start (1-based). Defaults to the first position.
    stop : int, optional
        The position at which to stop (1-based). Defaults to the last position.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.

    Returns
    -------

    Dxy : ndarray, float, shape (n_windows,)
        Nucleotide divergence.

    Examples
    --------

    Simplest case, two haplotypes in each population::

        >>> import allel
        >>> h = allel.HaplotypeArray([[0, 0, 0, 0],
        ...                           [0, 0, 0, 1],
        ...                           [0, 0, 1, 1],
        ...                           [0, 1, 1, 1],
        ...                           [1, 1, 1, 1],
        ...                           [0, 0, 1, 2],
        ...                           [0, 1, 1, 2],
        ...                           [0, 1, -1, -1],
        ...                           [-1, -1, -1, -1]])
        >>> ac1 = h.count_alleles(subpop=[0, 1])
        >>> ac2 = h.count_alleles(subpop=[2, 3])
        >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
        >>> dxy = sequence_divergence(pos, ac1, ac2, start=1, stop=31)
        >>> dxy
        0.12096774193548387

    """

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    ac1 = asarray_ndim(ac1, 2)
    ac2 = asarray_ndim(ac2, 2)
    if an1 is not None:
        an1 = asarray_ndim(an1, 1)
    if an2 is not None:
        an2 = asarray_ndim(an2, 1)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)

    # handle start/stop
    if start is not None or stop is not None:
        loc = pos.locate_range(start, stop)
        pos = pos[loc]
        ac1 = ac1[loc]
        ac2 = ac2[loc]
        if an1 is not None:
            an1 = an1[loc]
        if an2 is not None:
            an2 = an2[loc]
    if start is None:
        start = pos[0]
    if stop is None:
        stop = pos[-1]

    # calculate mean pairwise difference between the two populations
    mpd = mean_pairwise_difference_between(ac1, ac2, an1=an1, an2=an2, fill=0)

    # sum differences over variants
    mpd_sum = np.sum(mpd)

    # calculate value per base, N.B., expect pos is 1-based
    if is_accessible is None:
        n_bases = stop - start + 1
    else:
        n_bases = np.count_nonzero(is_accessible[start - 1:stop])

    dxy = mpd_sum / n_bases

    return dxy
Exemple #5
0
def sequence_diversity(pos, ac, start=None, stop=None, is_accessible=None):
    """Estimate nucleotide diversity within a given region.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    start : int, optional
        The position at which to start (1-based).
    stop : int, optional
        The position at which to stop (1-based).
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.

    Returns
    -------

    pi : ndarray, float, shape (n_windows,)
        Nucleotide diversity.

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                          [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> pi = allel.stats.sequence_diversity(pos, ac, start=1, stop=31)
    >>> pi
    0.13978494623655915

    """

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    ac = asarray_ndim(ac, 2)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)

    # deal with subregion
    if start is not None or stop is not None:
        loc = pos.locate_range(start, stop)
        pos = pos[loc]
        ac = ac[loc]
    if start is None:
        start = pos[0]
    if stop is None:
        stop = pos[-1]

    # calculate mean pairwise difference
    mpd = mean_pairwise_difference(ac, fill=0)

    # sum differences over variants
    mpd_sum = np.sum(mpd)

    # calculate value per base
    if is_accessible is None:
        n_bases = stop - start + 1
    else:
        n_bases = np.count_nonzero(is_accessible[start - 1 : stop])

    pi = mpd_sum / n_bases
    return pi
Exemple #6
0
def sequence_diversity(pos, ac, start=None, stop=None, is_accessible=None):
    """Estimate nucleotide diversity within a given region, which is the
    average proportion of sites (including monomorphic sites not present in the
    data) that differ between randomly chosen pairs of chromosomes.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    start : int, optional
        The position at which to start (1-based). Defaults to the first position.
    stop : int, optional
        The position at which to stop (1-based). Defaults to the last position.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.

    Returns
    -------

    pi : ndarray, float, shape (n_windows,)
        Nucleotide diversity.

    Notes
    -----

    If start and/or stop are not provided, uses the difference between the last
    and the first position as a proxy for the total number of sites, which can
    overestimate the sequence diversity.

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                          [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> pi = allel.sequence_diversity(pos, ac, start=1, stop=31)
    >>> pi
    0.13978494623655915

    """

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    ac = asarray_ndim(ac, 2)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)

    # deal with subregion
    if start is not None or stop is not None:
        loc = pos.locate_range(start, stop)
        pos = pos[loc]
        ac = ac[loc]
    if start is None:
        start = pos[0]
    if stop is None:
        stop = pos[-1]

    # calculate mean pairwise difference
    mpd = mean_pairwise_difference(ac, fill=0)

    # sum differences over variants
    mpd_sum = np.sum(mpd)

    # calculate value per base
    if is_accessible is None:
        n_bases = stop - start + 1
    else:
        n_bases = np.count_nonzero(is_accessible[start - 1:stop])

    pi = mpd_sum / n_bases
    return pi
Exemple #7
0
def tajima_d(ac, pos=None, start=None, stop=None, min_sites=3):
    """Calculate the value of Tajima's D over a given region.

    Parameters
    ----------
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    pos : array_like, int, shape (n_items,), optional
        Variant positions, using 1-based coordinates, in ascending order.
    start : int, optional
        The position at which to start (1-based). Defaults to the first position.
    stop : int, optional
        The position at which to stop (1-based). Defaults to the last position.
    min_sites : int, optional
        Minimum number of segregating sites for which to calculate a value. If
        there are fewer, np.nan is returned. Defaults to 3.

    Returns
    -------
    D : float

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                    [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> allel.tajima_d(ac)
    3.1445848780213814
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> allel.tajima_d(ac, pos=pos, start=7, stop=25)
    3.8779735196179366

    """

    # check inputs
    if not hasattr(ac, 'count_segregating'):
        ac = AlleleCountsArray(ac, copy=False)

    # deal with subregion
    if pos is not None and (start is not None or stop is not None):
        if not isinstance(pos, SortedIndex):
            pos = SortedIndex(pos, copy=False)
        loc = pos.locate_range(start, stop)
        ac = ac[loc]

    # count segregating variants
    S = ac.count_segregating()
    if S < min_sites:
        return np.nan

    # assume number of chromosomes sampled is constant for all variants
    n = ac.sum(axis=1).max()

    # (n-1)th harmonic number
    a1 = np.sum(1 / np.arange(1, n))

    # calculate Watterson's theta (absolute value)
    theta_hat_w_abs = S / a1

    # calculate mean pairwise difference
    mpd = mean_pairwise_difference(ac, fill=0)

    # calculate theta_hat pi (sum differences over variants)
    theta_hat_pi_abs = np.sum(mpd)

    # N.B., both theta estimates are usually divided by the number of
    # (accessible) bases but here we want the absolute difference
    d = theta_hat_pi_abs - theta_hat_w_abs

    # calculate the denominator (standard deviation)
    a2 = np.sum(1 / (np.arange(1, n)**2))
    b1 = (n + 1) / (3 * (n - 1))
    b2 = 2 * (n**2 + n + 3) / (9 * n * (n - 1))
    c1 = b1 - (1 / a1)
    c2 = b2 - ((n + 2) / (a1 * n)) + (a2 / (a1**2))
    e1 = c1 / a1
    e2 = c2 / (a1**2 + a2)
    d_stdev = np.sqrt((e1 * S) + (e2 * S * (S - 1)))

    # finally calculate Tajima's D
    D = d / d_stdev

    return D
Exemple #8
0
def watterson_theta(pos, ac, start=None, stop=None,
                    is_accessible=None):
    """Calculate the value of Watterson's estimator over a given region.

    Parameters
    ----------

    pos : array_like, int, shape (n_items,)
        Variant positions, using 1-based coordinates, in ascending order.
    ac : array_like, int, shape (n_variants, n_alleles)
        Allele counts array.
    start : int, optional
        The position at which to start (1-based). Defaults to the first position.
    stop : int, optional
        The position at which to stop (1-based). Defaults to the last position.
    is_accessible : array_like, bool, shape (len(contig),), optional
        Boolean array indicating accessibility status for all positions in the
        chromosome/contig.

    Returns
    -------

    theta_hat_w : float
        Watterson's estimator (theta hat per base).

    Examples
    --------

    >>> import allel
    >>> g = allel.GenotypeArray([[[0, 0], [0, 0]],
    ...                          [[0, 0], [0, 1]],
    ...                          [[0, 0], [1, 1]],
    ...                          [[0, 1], [1, 1]],
    ...                          [[1, 1], [1, 1]],
    ...                          [[0, 0], [1, 2]],
    ...                          [[0, 1], [1, 2]],
    ...                          [[0, 1], [-1, -1]],
    ...                          [[-1, -1], [-1, -1]]])
    >>> ac = g.count_alleles()
    >>> pos = [2, 4, 7, 14, 15, 18, 19, 25, 27]
    >>> theta_hat_w = allel.watterson_theta(pos, ac, start=1, stop=31)
    >>> theta_hat_w
    0.10557184750733138

    """

    # check inputs
    if not isinstance(pos, SortedIndex):
        pos = SortedIndex(pos, copy=False)
    is_accessible = asarray_ndim(is_accessible, 1, allow_none=True)
    # masking inaccessible sites from pos and ac
    pos, ac = mask_inaccessible(is_accessible, pos, ac)

    if not hasattr(ac, 'count_segregating'):
        ac = AlleleCountsArray(ac, copy=False)

    # deal with subregion
    if start is not None or stop is not None:
        loc = pos.locate_range(start, stop)
        pos = pos[loc]
        ac = ac[loc]
    if start is None:
        start = pos[0]
    if stop is None:
        stop = pos[-1]

    # count segregating variants
    S = ac.count_segregating()

    # assume number of chromosomes sampled is constant for all variants
    n = ac.sum(axis=1).max()

    # (n-1)th harmonic number
    a1 = np.sum(1 / np.arange(1, n))

    # calculate absolute value
    theta_hat_w_abs = S / a1

    # calculate value per base
    if is_accessible is None:
        n_bases = stop - start + 1
    else:
        n_bases = np.count_nonzero(is_accessible[start-1:stop])
    theta_hat_w = theta_hat_w_abs / n_bases

    return theta_hat_w
Exemple #9
0
def plot_variant_locator(pos,
                         step=None,
                         ax=None,
                         start=None,
                         stop=None,
                         flip=False,
                         line_kwargs=None):
    """
    Plot lines indicating the physical genome location of variants from a
    single chromosome/contig. By default the top x axis is in variant index
    space, and the bottom x axis is in genome position space.

    Parameters
    ----------

    pos : array_like
        A sorted 1-dimensional array of genomic positions from a single
        chromosome/contig.
    step : int, optional
        Plot a line for every `step` variants.
    ax : axes, optional
        The axes on which to draw. If not provided, a new figure will be
        created.
    start : int, optional
        The start position for the region to draw.
    stop : int, optional
        The stop position for the region to draw.
    flip : bool, optional
        Flip the plot upside down.
    line_kwargs : dict-like
        Additional keyword arguments passed through to `plt.Line2D`.

    Returns
    -------

    ax : axes
        The axes on which the plot was drawn

    """

    import matplotlib.pyplot as plt

    # check inputs
    pos = SortedIndex(pos, copy=False)

    # set up axes
    if ax is None:
        x = plt.rcParams['figure.figsize'][0]
        y = x / 7
        fig, ax = plt.subplots(figsize=(x, y))
        fig.tight_layout()

    # determine x axis limits
    if start is None:
        start = np.min(pos)
    if stop is None:
        stop = np.max(pos)
    loc = pos.locate_range(start, stop)
    pos = pos[loc]
    if step is None:
        step = len(pos) // 100
    ax.set_xlim(start, stop)

    # plot the lines
    if line_kwargs is None:
        line_kwargs = dict()
    # line_kwargs.setdefault('linewidth', .5)
    n_variants = len(pos)
    for i, p in enumerate(pos[::step]):
        xfrom = p
        xto = (start + ((i * step / n_variants) * (stop - start)))
        l = plt.Line2D([xfrom, xto], [0, 1], **line_kwargs)
        ax.add_line(l)

    # invert?
    if flip:
        ax.invert_yaxis()
        ax.xaxis.tick_top()
    else:
        ax.xaxis.tick_bottom()

    # tidy up
    ax.set_yticks([])
    ax.xaxis.set_tick_params(direction='out')
    for l in 'left', 'right':
        ax.spines[l].set_visible(False)

    return ax
Exemple #10
0
def plot_variant_locator(pos, step=None, ax=None, start=None,
                         stop=None, flip=False,
                         line_kwargs=None):
    """
    Plot lines indicating the physical genome location of variants from a
    single chromosome/contig. By default the top x axis is in variant index
    space, and the bottom x axis is in genome position space.

    Parameters
    ----------

    pos : array_like
        A sorted 1-dimensional array of genomic positions from a single
        chromosome/contig.
    step : int, optional
        Plot a line for every `step` variants.
    ax : axes, optional
        The axes on which to draw. If not provided, a new figure will be
        created.
    start : int, optional
        The start position for the region to draw.
    stop : int, optional
        The stop position for the region to draw.
    flip : bool, optional
        Flip the plot upside down.
    line_kwargs : dict-like
        Additional keyword arguments passed through to `plt.Line2D`.

    Returns
    -------

    ax : axes
        The axes on which the plot was drawn

    """

    import matplotlib.pyplot as plt

    # check inputs
    pos = SortedIndex(pos, copy=False)

    # set up axes
    if ax is None:
        x = plt.rcParams['figure.figsize'][0]
        y = x / 7
        fig, ax = plt.subplots(figsize=(x, y))
        fig.tight_layout()

    # determine x axis limits
    if start is None:
        start = np.min(pos)
    if stop is None:
        stop = np.max(pos)
    loc = pos.locate_range(start, stop)
    pos = pos[loc]
    if step is None:
        step = len(pos) // 100
    ax.set_xlim(start, stop)

    # plot the lines
    if line_kwargs is None:
        line_kwargs = dict()
    # line_kwargs.setdefault('linewidth', .5)
    n_variants = len(pos)
    for i, p in enumerate(pos[::step]):
        xfrom = p
        xto = (
            start +
            ((i * step / n_variants) * (stop-start))
        )
        l = plt.Line2D([xfrom, xto], [0, 1], **line_kwargs)
        ax.add_line(l)

    # invert?
    if flip:
        ax.invert_yaxis()
        ax.xaxis.tick_top()
    else:
        ax.xaxis.tick_bottom()

    # tidy up
    ax.set_yticks([])
    ax.xaxis.set_tick_params(direction='out')
    for l in 'left', 'right':
        ax.spines[l].set_visible(False)

    return ax