Exemple #1
0
def hudson_fst(ac1, ac2, fill=np.nan):
    """Calculate the numerator and denominator for Fst estimation using the
    method of Hudson (1992) elaborated by Bhatia et al. (2013).

    Parameters
    ----------
    ac1 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array from the first population.
    ac2 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array from the second population.
    fill : float
        Use this value where there are no pairs to compare (e.g.,
        all allele calls are missing).

    Returns
    -------
    num : ndarray, float, shape (n_variants,)
        Divergence between the two populations minus average
        of diversity within each population.
    den : ndarray, float, shape (n_variants,)
        Divergence between the two populations.

    Examples
    --------
    Calculate numerator and denominator for Fst estimation::

        >>> import allel
        >>> g = allel.GenotypeArray([[[0, 0], [0, 0], [1, 1], [1, 1]],
        ...                          [[0, 1], [0, 1], [0, 1], [0, 1]],
        ...                          [[0, 0], [0, 0], [0, 0], [0, 0]],
        ...                          [[0, 1], [1, 2], [1, 1], [2, 2]],
        ...                          [[0, 0], [1, 1], [0, 1], [-1, -1]]])
        >>> subpops = [[0, 1], [2, 3]]
        >>> ac1 = g.count_alleles(subpop=subpops[0])
        >>> ac2 = g.count_alleles(subpop=subpops[1])
        >>> num, den = allel.hudson_fst(ac1, ac2)
        >>> num
        array([ 1.        , -0.16666667,  0.        , -0.125     , -0.33333333])
        >>> den
        array([1.   , 0.5  , 0.   , 0.625, 0.5  ])

    Estimate Fst for each variant individually::

        >>> fst = num / den
        >>> fst
        array([ 1.        , -0.33333333,         nan, -0.2       , -0.66666667])

    Estimate Fst averaging over variants::

        >>> fst = np.sum(num) / np.sum(den)
        >>> fst
        0.1428571428571429

    """  # flake8: noqa

    # check inputs
    ac1 = asarray_ndim(ac1, 2)
    ac2 = asarray_ndim(ac2, 2)
    check_dim0_aligned(ac1, ac2)
    ac1, ac2 = ensure_dim1_aligned(ac1, ac2)

    # calculate these once only
    an1 = np.sum(ac1, axis=1)
    an2 = np.sum(ac2, axis=1)

    # calculate average diversity (a.k.a. heterozygosity) within each
    # population
    within = (mean_pairwise_difference(ac1, an1, fill=fill) +
              mean_pairwise_difference(ac2, an2, fill=fill)) / 2

    # calculate divergence (a.k.a. heterozygosity) between each population
    between = mean_pairwise_difference_between(ac1, ac2, an1, an2, fill=fill)

    # define numerator and denominator for Fst calculations
    num = between - within
    den = between

    return num, den
Exemple #2
0
def hudson_fst(ac1, ac2, fill=np.nan):
    """Calculate the numerator and denominator for Fst estimation using the
    method of Hudson (1992) elaborated by Bhatia et al. (2013).

    Parameters
    ----------
    ac1 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array from the first population.
    ac2 : array_like, int, shape (n_variants, n_alleles)
        Allele counts array from the second population.
    fill : float
        Use this value where there are no pairs to compare (e.g.,
        all allele calls are missing).

    Returns
    -------
    num : ndarray, float, shape (n_variants,)
        Divergence between the two populations minus average
        of diversity within each population.
    den : ndarray, float, shape (n_variants,)
        Divergence between the two populations.

    Examples
    --------
    Calculate numerator and denominator for Fst estimation::

        >>> import allel
        >>> g = allel.GenotypeArray([[[0, 0], [0, 0], [1, 1], [1, 1]],
        ...                          [[0, 1], [0, 1], [0, 1], [0, 1]],
        ...                          [[0, 0], [0, 0], [0, 0], [0, 0]],
        ...                          [[0, 1], [1, 2], [1, 1], [2, 2]],
        ...                          [[0, 0], [1, 1], [0, 1], [-1, -1]]])
        >>> subpops = [[0, 1], [2, 3]]
        >>> ac1 = g.count_alleles(subpop=subpops[0])
        >>> ac2 = g.count_alleles(subpop=subpops[1])
        >>> num, den = allel.stats.hudson_fst(ac1, ac2)
        >>> num
        array([ 1.        , -0.16666667,  0.        , -0.125     , -0.33333333])
        >>> den
        array([ 1.   ,  0.5  ,  0.   ,  0.625,  0.5  ])

    Estimate Fst for each variant individually::

        >>> fst = num / den
        >>> fst
        array([ 1.        , -0.33333333,         nan, -0.2       , -0.66666667])

    Estimate Fst averaging over variants::

        >>> fst = np.sum(num) / np.sum(den)
        >>> fst
        0.1428571428571429

    """  # flake8: noqa

    # check inputs
    ac1 = asarray_ndim(ac1, 2)
    ac2 = asarray_ndim(ac2, 2)
    check_dim0_aligned(ac1, ac2)
    ac1, ac2 = ensure_dim1_aligned(ac1, ac2)

    # calculate these once only
    an1 = np.sum(ac1, axis=1)
    an2 = np.sum(ac2, axis=1)

    # calculate average diversity (a.k.a. heterozygosity) within each
    # population
    within = (mean_pairwise_difference(ac1, an1, fill=fill) +
              mean_pairwise_difference(ac2, an2, fill=fill)) / 2

    # calculate divergence (a.k.a. heterozygosity) between each population
    between = mean_pairwise_difference_between(ac1, ac2, an1, an2, fill=fill)

    # define numerator and denominator for Fst calculations
    num = between - within
    den = between

    return num, den