Exemple #1
0
    def test_heterozygosity_expected(self):

        def refimpl(f, ploidy, fill=0):
            """Limited reference implementation for testing purposes."""

            # check allele frequencies sum to 1
            af_sum = np.sum(f, axis=1)

            # assume three alleles
            p = f[:, 0]
            q = f[:, 1]
            r = f[:, 2]

            out = 1 - p**ploidy - q**ploidy - r**ploidy
            with ignore_invalid():
                out[(af_sum < 1) | np.isnan(af_sum)] = fill

            return out

        # diploid
        g = GenotypeArray([[[0, 0], [0, 0]],
                           [[1, 1], [1, 1]],
                           [[1, 1], [2, 2]],
                           [[0, 0], [0, 1]],
                           [[0, 0], [0, 2]],
                           [[1, 1], [1, 2]],
                           [[0, 1], [0, 1]],
                           [[0, 1], [1, 2]],
                           [[0, 0], [-1, -1]],
                           [[0, 1], [-1, -1]],
                           [[-1, -1], [-1, -1]]], dtype='i1')
        expect1 = [0, 0, 0.5, .375, .375, .375, .5, .625, 0, .5, -1]
        af = g.count_alleles().to_frequencies()
        expect2 = refimpl(af, ploidy=g.ploidy, fill=-1)
        actual = allel.heterozygosity_expected(af, ploidy=g.ploidy, fill=-1)
        assert_array_almost_equal(expect1, actual)
        assert_array_almost_equal(expect2, actual)
        expect3 = [0, 0, 0.5, .375, .375, .375, .5, .625, 0, .5, 0]
        actual = allel.heterozygosity_expected(af, ploidy=g.ploidy, fill=0)
        assert_array_almost_equal(expect3, actual)

        # polyploid
        g = GenotypeArray([[[0, 0, 0], [0, 0, 0]],
                           [[1, 1, 1], [1, 1, 1]],
                           [[1, 1, 1], [2, 2, 2]],
                           [[0, 0, 0], [0, 0, 1]],
                           [[0, 0, 0], [0, 0, 2]],
                           [[1, 1, 1], [0, 1, 2]],
                           [[0, 0, 1], [0, 1, 1]],
                           [[0, 1, 1], [0, 1, 2]],
                           [[0, 0, 0], [-1, -1, -1]],
                           [[0, 0, 1], [-1, -1, -1]],
                           [[-1, -1, -1], [-1, -1, -1]]], dtype='i1')
        af = g.count_alleles().to_frequencies()
        expect = refimpl(af, ploidy=g.ploidy, fill=-1)
        actual = allel.heterozygosity_expected(af, ploidy=g.ploidy, fill=-1)
        assert_array_almost_equal(expect, actual)
Exemple #2
0
def exp_het(pos, gt):
    """Calculate the expected rate of heterozygosity for each variant under HWE.

    Parameters
    ----------
    gt : TYPE
        DESCRIPTION.
    pos : TYPE
        DESCRIPTION.

    Returns
    -------
    het_mean : TYPE
        DESCRIPTION.
    het_std : TYPE
        DESCRIPTION.

    """
    gtseg, pos_s = get_seg(gt, pos)
    af = gtseg.count_alleles().to_frequencies()
    het = allel.heterozygosity_expected(af, ploidy=2)
    het_mean = np.nanmean(het)
    het_std = np.nanstd(het)

    return het_mean, het_std
Exemple #3
0
def traditional_stats(data):
    """
    Caclulates lots of (mostly) traditional statistics,
    that are summaries of the site frequency spectrum.

    Arguments
    ---------
    data: Named tuple of results (made by collate_results function)

    Returns
    ---------
    Nested dictionary of statistics
    """
    pop_names = ["domestic", "wild", "captive", "all_pops"]

    stats = {
        "sfs_mean": {},
        "diversity": {},
        "wattersons_theta": {},
        "tajimas_d": {},
        "observed_heterozygosity": {},
        "expected_heterozygosity": {},
        "segregating_sites": {},
        "monomorphic_sites": {},
        "roh_mean": {},
        "roh_iqr": {},
        "r2": {},
        "f3": {},
        "divergence": {},
        "fst": {},
        "f2": {},
    }

    for pop in pop_names:
        # One way statistics
        stats["sfs_mean"][pop] = binned_sfs_mean(data.allele_counts[pop])
        stats["diversity"][pop] = allel.sequence_diversity(
            data.positions, data.allele_counts[pop])
        stats["wattersons_theta"][pop] = allel.watterson_theta(
            data.positions, data.allele_counts[pop])
        stats["tajimas_d"][pop] = allel.tajima_d(data.allele_counts[pop],
                                                 data.positions)
        stats["observed_heterozygosity"][pop] = allel.heterozygosity_observed(
            data.genotypes[pop]).mean()
        stats["expected_heterozygosity"][pop] = allel.heterozygosity_expected(
            data.allele_counts[pop].to_frequencies(), ploidy=2).mean()
        stats["segregating_sites"] = data.allele_counts[pop].count_segregating(
        )

        if pop != "all_pops":  # all_pops has no monomorphic sites
            stats["monomorphic_sites"][pop] = data.allele_counts[
                pop].count_non_segregating()

            # Three way statistics
            other_pops = [
                pop_name for pop_name in pop_names
                if pop_name not in ["all_pops", pop]
            ]
            t, b = allel.patterson_f3(data.allele_counts[pop],
                                      data.allele_counts[other_pops[0]],
                                      data.allele_counts[other_pops[1]])
            stats["f3"][pop] = np.sum(t) / np.sum(b)

    # Two way statistics
    for comparison in ["domestic_wild", "domestic_captive", "wild_captive"]:
        p = comparison.split("_")
        stats["divergence"][comparison] = allel.sequence_divergence(
            data.positions, data.allele_counts[p[0]], data.allele_counts[p[1]])

        num, den = allel.hudson_fst(data.allele_counts[p[0]],
                                    data.allele_counts[p[1]])
        stats["fst"][comparison] = np.sum(num) / np.sum(den)
        stats["f2"][comparison] = allel.patterson_f2(
            data.allele_counts[p[0]], data.allele_counts[p[1]]).mean()

    return stats