Exemple #1
0
    def setUp(self):
        super().setUp()
        params = Params({
            "model": {
                "type": "simple_tagger",
                "text_field_embedder": {
                    "token_embedders": {
                        "tokens": {
                            "type": "embedding",
                            "embedding_dim": 5
                        }
                    }
                },
                "encoder": {
                    "type": "lstm",
                    "input_size": 5,
                    "hidden_size": 7,
                    "num_layers": 2
                },
            },
            "dataset_reader": {
                "type": "sequence_tagging"
            },
            "train_data_path":
            str(self.FIXTURES_ROOT / "data" / "sequence_tagging.tsv"),
            "validation_data_path":
            str(self.FIXTURES_ROOT / "data" / "sequence_tagging.tsv"),
            "iterator": {
                "type": "basic",
                "batch_size": 2
            },
            "trainer": {
                "cuda_device": -1,
                "num_epochs": 2,
                "optimizer": "adam"
            },
        })
        all_datasets = datasets_from_params(params)
        vocab = Vocabulary.from_params(
            params.pop("vocabulary", {}),
            (instance for dataset in all_datasets.values()
             for instance in dataset),
        )
        model = Model.from_params(vocab=vocab, params=params.pop("model"))
        iterator = DataIterator.from_params(params.pop("iterator"))
        iterator.index_with(vocab)
        train_data = all_datasets["train"]
        trainer_params = params.pop("trainer")
        serialization_dir = os.path.join(self.TEST_DIR,
                                         "test_search_learning_rate")

        self.trainer = Trainer.from_params(
            model,
            serialization_dir,
            iterator,
            train_data,
            params=trainer_params,
            validation_data=None,
            validation_iterator=None,
        )
    def setUp(self):
        super().setUp()
        params = Params({
                "model": {
                    "type": "simple_tagger",
                    "text_field_embedder": {
                        "token_embedders": {
                            "tokens": {
                                "type": "embedding",
                                "embedding_dim": 5
                            }
                        }
                    },
                    "encoder": {
                        "type": "lstm",
                        "input_size": 5,
                        "hidden_size": 7,
                        "num_layers": 2
                    }
                },
                "dataset_reader": {"type": "sequence_tagging"},
                "train_data_path": str(self.FIXTURES_ROOT / 'data' / 'sequence_tagging.tsv'),
                "validation_data_path": str(self.FIXTURES_ROOT / 'data' / 'sequence_tagging.tsv'),
                "iterator": {"type": "basic", "batch_size": 2},
                "trainer": {
                    "cuda_device": -1,
                    "num_epochs": 2,
                    "optimizer": "adam"
                }
            })
        all_datasets = datasets_from_params(params)
        vocab = Vocabulary.from_params(
            params.pop("vocabulary", {}),
            (instance for dataset in all_datasets.values()
             for instance in dataset)
        )
        model = Model.from_params(vocab=vocab, params=params.pop('model'))
        iterator = DataIterator.from_params(params.pop("iterator"))
        iterator.index_with(vocab)
        train_data = all_datasets['train']
        trainer_params = params.pop("trainer")
        serialization_dir = os.path.join(self.TEST_DIR, 'test_search_learning_rate')

        self.trainer = Trainer.from_params(model,
                                           serialization_dir,
                                           iterator,
                                           train_data,
                                           params=trainer_params,
                                           validation_data=None,
                                           validation_iterator=None)