def test_AlloUsage1(): a1 = AlloUsage(from_date, to_date, site_filter=site_filter) combo_ts1 = a1.get_ts(datasets, 'A-JUN', cols) combo_ts2 = a1.get_ts(datasets, 'M', cols) a1.plot_group(freq, export_path=base_dir) a1.plot_stacked(freq, export_path=base_dir) assert (len(combo_ts1) == 73) & (len(combo_ts2) == 869)
### Test 4 sites1 = mssql.rd_sql(server, database, sites_table, ['ExtSiteID', 'CatchmentGroupName', summ_col], where_in={'CatchmentGroupName': catch_group}) site_filter = {'SwazName': sites1.SwazName.unique().tolist()} a1 = AlloUsage(from_date, to_date, site_filter=site_filter) ts1 = a1.get_ts(datasets, freq, cols, irr_season=True) a1.plot_group( 'A-JUN', val='total', with_restr=True, export_path=r'E:\ecan\local\Projects\requests\suz\2018-12-17\plots') a1.plot_stacked( 'A-JUN', val='total', export_path=r'E:\ecan\local\Projects\requests\suz\2018-12-17\plots') ### Test 5 a1 = AlloUsage(from_date, to_date, site_filter=waitaki) a1.allo.to_csv(os.path.join(export_path, 'waitaki_allo_2019-02-27.csv')) a1.allo_wap.to_csv(os.path.join(export_path, 'waitaki_allo_wap_2019-02-27.csv'))
site_filter=site_filter, crc_filter=crc_filter) combo_ts = a1.get_ts(datasets, freq, ['SwazName', 'use_type', 'date'], irr_season=True) combo_ts.to_csv(os.path.join(export_dir, export2)) ######################################### ### Plotting ### Grouped ## Lumped a1.plot_group('A-JUN', group='SwazGroupName', export_path=os.path.join(export_dir, plot_dir), irr_season=True) ## broken up a1.plot_group('A-JUN', group='SwazName', export_path=os.path.join(export_dir, plot_dir), irr_season=True) ### Stacked ## lumped a1.plot_stacked('A-JUN', group='SwazGroupName', export_path=os.path.join(export_dir, plot_dir), irr_season=True)
site_filter=site_filter, crc_filter=crc_filter) combo_ts = a1.get_ts(datasets, freq, ['SwazName', 'use_type', 'date'], irr_season=True) combo_ts.to_csv(os.path.join(py_path, export2)) ######################################### ### Plotting ### Grouped ## Lumped a1.plot_group('A-JUN', group='SwazGroupName', export_path=plot_path, irr_season=True) ## broken up a1.plot_group('A-JUN', group='SwazName', export_path=plot_path, irr_season=True) ### Stacked ## lumped a1.plot_stacked('A-JUN', group='SwazGroupName', export_path=plot_path, irr_season=True)
######################################## ### Read in sites test_crc = pd.read_csv(test_sites_csv).crc.unique().tolist() ######################################## ### generate! #sites1 = mssql.rd_sql(server, database, sites_table, ['ExtSiteID', 'CatchmentGroupName', summ_col], where_in={'CatchmentGroupName': catch_group}) # #site_filter = {'SwazName': sites1.SwazName.unique().tolist()} a1 = AlloUsage() a1 = AlloUsage(from_date, to_date, crc_filter={'crc': test_crc}) ts1 = a1.get_ts(datasets, freq, cols, usage_allo_ratio=2) ts1.to_csv(os.path.join(export_path, export1)) a1.plot_group('A-JUN', val='total', group='crc', with_restr=False, export_path=export_path) # a1.plot_stacked('A-JUN', val='total', export_path=r'E:\ecan\local\Projects\requests\suz\2018-12-17\plots') self = AlloUsage()