Exemple #1
0
def test_ista():
    """Test that objective goes down in ISTA for a simple problem."""

    # || Ax - b ||_2^2
    n, p = 100, 10
    x = np.random.randn(p)
    x /= np.linalg.norm(x)
    A = np.random.randn(n, p)
    b = np.dot(A, x)

    def obj(x):
        res = A.dot(x) - b
        return 0.5 * np.dot(res.ravel(), res.ravel())

    def grad(x):
        return A.T.dot(A.dot(x) - b)

    def prox(x, step_size=0):
        return x / max(np.linalg.norm(x), 1.)

    x0 = np.random.rand(p)
    L = power_iteration(A.dot(A.T))
    step_size = 0.99 / L
    x_hat, pobj = fista(obj,
                        grad,
                        prox,
                        step_size,
                        x0,
                        max_iter=600,
                        momentum=False,
                        eps=None,
                        debug=True,
                        verbose=0)
    np.testing.assert_array_almost_equal(x, x_hat)
    assert np.all(np.diff(pobj) <= 0)
Exemple #2
0
def test_linear_operator():
    """Test linear operator."""
    n_times, n_atoms, n_times_atom = 64, 16, 32
    n_times_valid = n_times - n_times_atom + 1

    rng = check_random_state(42)
    ds = rng.randn(n_atoms, n_times_atom)
    some_sample_weights = np.abs(rng.randn(n_times))

    for sample_weights in [None, some_sample_weights]:
        gbc = partial(gram_block_circulant, ds=ds, n_times_valid=n_times_valid,
                      sample_weights=sample_weights)
        DTD_full = gbc(method='full')
        DTD_scipy = gbc(method='scipy')
        DTD_custom = gbc(method='custom')

        z = rng.rand(DTD_full.shape[1])
        assert np.allclose(DTD_full.dot(z), DTD_scipy.dot(z))
        assert np.allclose(DTD_full.dot(z), DTD_custom.dot(z))

        # test power iterations with linear operator
        mu, _ = linalg.eigh(DTD_full)
        for DTD in [DTD_full, DTD_scipy, DTD_custom]:
            mu_hat = power_iteration(DTD)
            assert np.allclose(np.max(mu), mu_hat, rtol=1e-2)
Exemple #3
0
def test_power_iterations():
    """Test power iteration."""
    A = np.diag((1, 2, 3))
    mu, b = np.linalg.eig(A)
    mu_hat = power_iteration(A)
    assert np.isclose(mu_hat, mu.max())