n_iter = 10

# Parameter of the alpha-stable distribution for the alpha-CSC model.
# 0 < alpha < 2
# A value of 2 would correspond to the Gaussian noise model, as in vanilla CSC.
alpha = 1.2

###############################################################################
# First, we fit a CSC model on the clean data. Interestingly, we obtain
# prototypical waveforms of the signal on which we can clearly see the CFC.

from alphacsc import learn_d_z, learn_d_z_weighted

X = data_clean

_, _, d_hat, z_hat, _ = learn_d_z(X, n_iter=n_iter, **common_params)

plot_atoms(d_hat)

###############################################################################
# Then, if we fit a CSC model on the dirty data, the model is strongly affected
# by the artifacts, and we cannot see CFC anymore in the temporal waveforms.

X = data_dirty

_, _, d_hat, z_hat, _ = learn_d_z(X, n_iter=n_iter, **common_params)

plot_atoms(d_hat)

###############################################################################
# Finally, If we fit an alpha-CSC model on the dirty data, the model is less
Exemple #2
0
###############################################################################
# Note that the atoms don't always have the same amplitude or occur at the
# same time instant.
#
# Now, we run vanilla CSC on the data.

from alphacsc import learn_d_z  # noqa

random_state = 60

pobj, times, d_hat, z_hat, reg = learn_d_z(X,
                                           n_atoms,
                                           n_times_atom,
                                           reg=reg,
                                           n_iter=n_iter,
                                           solver_d_kwargs=dict(factr=100),
                                           random_state=random_state,
                                           n_jobs=1,
                                           verbose=1)
print('Vanilla CSC')

###############################################################################
# Finally, let's compare the results.

import matplotlib.pyplot as plt  # noqa

plt.figure()
plt.plot(d_hat.T)
plt.plot(ds_true.T, 'k--')
from alphacsc import learn_d_z

params = dict(
    n_atoms=3,
    n_times_atom=int(sfreq * 1.0),  # 1000. ms
    reg=5.,
    n_iter=10,
    solver_z='l-bfgs',
    solver_z_kwargs=dict(factr=1e9),
    solver_d_kwargs=dict(factr=1e2),
    random_state=42,
    n_jobs=5,
    verbose=1)

_, _, d_hat, z_hat, _ = learn_d_z(data, **params)

###############################################################################
# Plot the temporal patterns. Interestingly, we obtain prototypical
# waveforms of the signal on which we can clearly see the CFC.

n_atoms, n_times_atom = d_hat.shape
n_columns = min(6, n_atoms)
n_rows = int(np.ceil(n_atoms // n_columns))
figsize = (4 * n_columns, 3 * n_rows)
fig, axes = plt.subplots(n_rows, n_columns, figsize=figsize, sharey=True)
axes = axes.ravel()

for kk in range(n_atoms):
    ax = axes[kk]
    time = np.arange(n_times_atom) / sfreq
Exemple #4
0
X_new -= np.mean(X_new)
X_new /= np.std(X_new)

###############################################################################
# The convolutions can result in edge artifacts at the edges of the trials.
# Therefore, we discount the contributions from the edges by windowing the
# trials.
from numpy import hamming
X_new *= hamming(n_times)[None, :]

###############################################################################
# Of course, in a data-limited setting we want to use as much of the data as
# possible. If this is the case, you can set `overlap` to non-zero (for example
# half the epoch length).
#
# Now, we run regular CSC since the trials are not too noisy
from alphacsc import learn_d_z
pobj, times, d_hat, z_hat, reg = learn_d_z(X_new,
                                           n_atoms,
                                           n_times_atom,
                                           reg=reg,
                                           n_iter=n_iter,
                                           random_state=random_state,
                                           n_jobs=1)

###############################################################################
# Let's look at the atoms now.
plt.figure()
plt.plot(d_hat.T)
plt.show()
Exemple #5
0
###############################################################################
# Now, we run vanilla CSC on the data.

from functools import partial  # noqa
from alphacsc import learn_d_z, update_d_block  # noqa

random_state = 60
func = partial(update_d_block, projection='dual')

pobj, times, d_hat, Z_hat = learn_d_z(X,
                                      n_atoms,
                                      n_times_atom,
                                      func_d=func,
                                      reg=reg,
                                      n_iter=n_iter,
                                      solver_d_kwargs=dict(factr=100),
                                      random_state=random_state,
                                      n_jobs=1,
                                      solver_z='l_bfgs',
                                      verbose=1)
print('Vanilla CSC')

###############################################################################
# and then alpha CSC on the same data

from alphacsc import learn_d_z_weighted  # noqa

d_hat_mcem, z_hat_mcem, Tau = learn_d_z_weighted(
    X,
    n_atoms,