Exemple #1
0
    def fit(self, X, y, sample_weight=None):
        from sklearn.tree import DecisionTreeClassifier

        self.max_features = float(self.max_features)
        # Heuristic to set the tree depth
        if check_none(self.max_depth_factor):
            max_depth_factor = self.max_depth_factor = None
        else:
            num_features = X.shape[1]
            self.max_depth_factor = int(self.max_depth_factor)
            max_depth_factor = max(
                1, int(np.round(self.max_depth_factor * num_features, 0)))
        self.min_samples_split = int(self.min_samples_split)
        self.min_samples_leaf = int(self.min_samples_leaf)
        if check_none(self.max_leaf_nodes):
            self.max_leaf_nodes = None
        else:
            self.max_leaf_nodes = int(self.max_leaf_nodes)
        self.min_weight_fraction_leaf = float(self.min_weight_fraction_leaf)
        self.min_impurity_decrease = float(self.min_impurity_decrease)

        self.estimator = DecisionTreeClassifier(
            criterion=self.criterion,
            max_depth=max_depth_factor,
            min_samples_split=self.min_samples_split,
            min_samples_leaf=self.min_samples_leaf,
            max_leaf_nodes=self.max_leaf_nodes,
            min_weight_fraction_leaf=self.min_weight_fraction_leaf,
            min_impurity_decrease=self.min_impurity_decrease,
            class_weight=self.class_weight,
            random_state=self.random_state)
        self.estimator.fit(X, y, sample_weight=sample_weight)
        return self
    def iterative_fit(self, X, y, sample_weight=None, n_iter=1, refit=False):

        from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor as GBR
        # Special fix for gradient boosting!
        if isinstance(X, np.ndarray):
            X = np.ascontiguousarray(X, dtype=X.dtype)
        if refit:
            self.estimator = None

        if self.estimator is None:
            self.learning_rate = float(self.learning_rate)
            self.n_estimators = int(self.n_estimators)
            self.subsample = float(self.subsample)
            self.min_samples_split = int(self.min_samples_split)
            self.min_samples_leaf = int(self.min_samples_leaf)
            self.min_weight_fraction_leaf = float(
                self.min_weight_fraction_leaf)
            if check_none(self.max_depth):
                self.max_depth = None
            else:
                self.max_depth = int(self.max_depth)
            self.max_features = float(self.max_features)
            if check_none(self.max_leaf_nodes):
                self.max_leaf_nodes = None
            else:
                self.max_leaf_nodes = int(self.max_leaf_nodes)
            self.min_impurity_decrease = float(self.min_impurity_decrease)
            self.verbose = int(self.verbose)

            self.estimator = GBR(
                loss=self.loss,
                learning_rate=self.learning_rate,
                n_estimators=n_iter,
                subsample=self.subsample,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                max_depth=self.max_depth,
                criterion=self.criterion,
                max_features=self.max_features,
                max_leaf_nodes=self.max_leaf_nodes,
                random_state=self.random_state,
                verbose=self.verbose,
                warm_start=True,
            )

        else:
            self.estimator.n_estimators += n_iter
            self.estimator.n_estimators = min(self.estimator.n_estimators,
                                              self.n_estimators)

        self.estimator.fit(X, y, sample_weight=sample_weight)

        # Apparently this if is necessary
        if self.estimator.n_estimators >= self.n_estimators:
            self.fully_fit_ = True

        return self
Exemple #3
0
    def iterative_fit(self, X, y, sample_weight=None, n_iter=1, refit=False):
        from sklearn.ensemble import RandomForestClassifier

        if refit:
            self.estimator = None

        if self.estimator is None:
            self.n_estimators = int(self.n_estimators)
            if check_none(self.max_depth):
                self.max_depth = None
            else:
                self.max_depth = int(self.max_depth)

            self.min_samples_split = int(self.min_samples_split)
            self.min_samples_leaf = int(self.min_samples_leaf)
            self.min_weight_fraction_leaf = float(
                self.min_weight_fraction_leaf)

            if self.max_features not in ("sqrt", "log2", "auto"):
                max_features = int(X.shape[1]**float(self.max_features))
            else:
                max_features = self.max_features

            self.bootstrap = check_for_bool(self.bootstrap)

            if check_none(self.max_leaf_nodes):
                self.max_leaf_nodes = None
            else:
                self.max_leaf_nodes = int(self.max_leaf_nodes)

            self.min_impurity_decrease = float(self.min_impurity_decrease)

            # initial fit of only increment trees
            self.estimator = RandomForestClassifier(
                n_estimators=n_iter,
                criterion=self.criterion,
                max_features=max_features,
                max_depth=self.max_depth,
                min_samples_split=self.min_samples_split,
                min_samples_leaf=self.min_samples_leaf,
                min_weight_fraction_leaf=self.min_weight_fraction_leaf,
                bootstrap=self.bootstrap,
                max_leaf_nodes=self.max_leaf_nodes,
                min_impurity_decrease=self.min_impurity_decrease,
                random_state=self.random_state,
                n_jobs=self.n_jobs,
                class_weight=self.class_weight,
                warm_start=True)
        else:

            self.estimator.n_estimators += n_iter
            self.estimator.n_estimators = min(self.estimator.n_estimators,
                                              self.n_estimators)

        self.estimator.fit(X, y, sample_weight=sample_weight)
        return self
Exemple #4
0
    def fit(self, X, Y):
        import sklearn.svm
        # Nested kernel
        if isinstance(self.kernel, tuple):
            nested_kernel = self.kernel
            self.kernel = nested_kernel[0]
            if self.kernel == 'poly':
                self.degree = nested_kernel[1]['degree']
                self.coef0 = nested_kernel[1]['coef0']
            elif self.kernel == 'sigmoid':
                self.coef0 = nested_kernel[1]['coef0']

        self.C = float(self.C)
        if self.degree is None:
            self.degree = 3
        else:
            self.degree = int(self.degree)
        if self.gamma is None:
            self.gamma = 0.0
        else:
            self.gamma = float(self.gamma)
        if self.coef0 is None:
            self.coef0 = 0.0
        else:
            self.coef0 = float(self.coef0)
        self.tol = float(self.tol)
        self.max_iter = float(self.max_iter)

        self.shrinking = check_for_bool(self.shrinking)

        if check_none(self.class_weight):
            self.class_weight = None

        self.estimator = sklearn.svm.SVC(C=self.C,
                                         kernel=self.kernel,
                                         degree=self.degree,
                                         gamma=self.gamma,
                                         coef0=self.coef0,
                                         shrinking=self.shrinking,
                                         tol=self.tol,
                                         class_weight=self.class_weight,
                                         max_iter=self.max_iter,
                                         random_state=self.random_state,
                                         decision_function_shape='ovr')
        self.estimator.fit(X, Y)
        return self
Exemple #5
0
    def __init__(self, n_estimators, criterion, min_samples_leaf,
                 min_samples_split, max_features, bootstrap, random_state=None):

        if check_none(n_estimators):
            self.n_estimators = None
        else:
            self.n_estimators = int(self.n_estimators)
        self.criterion = criterion

        self.min_samples_leaf = min_samples_leaf
        self.min_samples_split = min_samples_split
        self.max_features = max_features
        self.bootstrap = bootstrap
        self.n_jobs = -1
        self.random_state = random_state

        self.estimator = None
        self.start_time = time.time()
        self.time_limit = None
Exemple #6
0
    def fit(self, X, Y):
        import sklearn.svm
        import sklearn.multiclass

        # In case of nested penalty
        if isinstance(self.penalty, dict):
            combination = self.penalty
            self.penalty = combination['penalty']
            self.loss = combination['loss']
            self.dual = combination['dual']

        self.C = float(self.C)
        self.tol = float(self.tol)

        self.dual = check_for_bool(self.dual)

        self.fit_intercept = check_for_bool(self.fit_intercept)

        self.intercept_scaling = float(self.intercept_scaling)

        if check_none(self.class_weight):
            self.class_weight = None

        estimator = sklearn.svm.LinearSVC(
            penalty=self.penalty,
            loss=self.loss,
            dual=self.dual,
            tol=self.tol,
            C=self.C,
            class_weight=self.class_weight,
            fit_intercept=self.fit_intercept,
            intercept_scaling=self.intercept_scaling,
            multi_class=self.multi_class,
            random_state=self.random_state)

        if len(Y.shape) == 2 and Y.shape[1] > 1:
            self.estimator = sklearn.multiclass.OneVsRestClassifier(estimator,
                                                                    n_jobs=1)
        else:
            self.estimator = estimator

        self.estimator.fit(X, Y)
        return self
Exemple #7
0
    def fit(self, X, Y):
        import sklearn.multiclass
        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

        # In case of nested shrinkage
        if isinstance(self.shrinkage, tuple):
            self.shrinkage_factor = self.shrinkage[1]['shrinkage_factor']
            self.shrinkage = self.shrinkage[0]

        if check_none(self.shrinkage):
            self.shrinkage_ = None
            solver = 'svd'
        elif self.shrinkage == "auto":
            self.shrinkage_ = 'auto'
            solver = 'lsqr'
        elif self.shrinkage == "manual":
            self.shrinkage_ = float(self.shrinkage_factor)
            solver = 'lsqr'
        else:
            raise ValueError(self.shrinkage)

        self.n_components = int(self.n_components)
        self.tol = float(self.tol)

        estimator = LinearDiscriminantAnalysis(n_components=self.n_components,
                                               shrinkage=self.shrinkage_,
                                               tol=self.tol,
                                               solver=solver)

        if len(Y.shape) == 2 and Y.shape[1] > 1:
            self.estimator = sklearn.multiclass.OneVsRestClassifier(estimator,
                                                                    n_jobs=1)
        else:
            self.estimator = estimator

        self.estimator.fit(X, Y)
        return self
Exemple #8
0
    def iterative_fit(self, X, y, n_iter=2, refit=False, sample_weight=None):
        from sklearn.linear_model.stochastic_gradient import SGDRegressor

        # Need to fit at least two iterations, otherwise early stopping will not
        # work because we cannot determine whether the algorithm actually
        # converged. The only way of finding this out is if the sgd spends less
        # iterations than max_iter. If max_iter == 1, it has to spend at least
        # one iteration and will always spend at least one iteration, so we
        # cannot know about convergence.

        if refit:
            self.estimator = None

        if self.estimator is None:
            self.fully_fit_ = False

            self.alpha = float(self.alpha)
            if not check_none(self.epsilon_insensitive):
                self.epsilon_insensitive = float(self.epsilon_insensitive)
            self.l1_ratio = float(self.l1_ratio) if self.l1_ratio is not None \
                else 0.15
            self.epsilon_huber = float(self.epsilon_huber) if self.epsilon_huber is not None \
                else 0.1
            self.eta0 = float(self.eta0) if self.eta0 is not None else 0.01
            self.power_t = float(self.power_t) if self.power_t is not None \
                else 0.5
            self.average = check_for_bool(self.average)
            self.fit_intercept = check_for_bool(self.fit_intercept)
            self.tol = float(self.tol)
            if self.loss == "huber":
                epsilon = self.epsilon_huber
            elif self.loss in [
                    "epsilon_insensitive", "squared_epsilon_insensitive"
            ]:
                epsilon = self.epsilon_insensitive
            else:
                epsilon = None
            self.estimator = SGDRegressor(loss=self.loss,
                                          penalty=self.penalty,
                                          alpha=self.alpha,
                                          fit_intercept=self.fit_intercept,
                                          max_iter=n_iter,
                                          tol=self.tol,
                                          learning_rate=self.learning_rate,
                                          l1_ratio=self.l1_ratio,
                                          epsilon=epsilon,
                                          eta0=self.eta0,
                                          power_t=self.power_t,
                                          shuffle=True,
                                          average=self.average,
                                          random_state=self.random_state,
                                          warm_start=True)
            self.estimator.fit(X, y, sample_weight=sample_weight)
        else:
            self.estimator.max_iter += n_iter
            self.estimator.max_iter = min(self.estimator.max_iter, 512)
            self.estimator._validate_params()
            self.estimator._partial_fit(
                X,
                y,
                alpha=self.estimator.alpha,
                C=1.0,
                loss=self.estimator.loss,
                learning_rate=self.estimator.learning_rate,
                max_iter=n_iter,
                sample_weight=sample_weight,
                coef_init=None,
                intercept_init=None)

        if self.estimator.max_iter >= 512 or n_iter > self.estimator.n_iter_:
            self.fully_fit_ = True

        return self