Exemple #1
0
import altair as alt
from vega_datasets import data
import geopandas as gpd

df_quakes = gpd.read_file("lastday.json")
df_quakes = df_quakes[df_quakes["mag"] != "-"]
df_quakes["mag_num"] = df_quakes["mag"].astype(float)
df_quakes = df_quakes[df_quakes.mag_num > 0]

# Data generators for the background
sphere = alt.sphere()
graticule = alt.graticule()

# Source of land data
# source = alt.topo_feature(data.world_110m.url, 'countries')
source = gpd.read_file("AT_and_neighbors.geojson")

# Layering and configuring the components
background = alt.Chart(source).mark_geoshape(fill='lightgrey', stroke='white')
points = alt.Chart(df_quakes).mark_circle().encode(
    longitude="lon:Q",
    latitude="lat:Q",
    #size=alt.Size("mag_num:Q", title="Magnitude"),
    #size="magmag:Q",
    color="red",
    fillOpacity=0.5
    # ).transform_calculate(
    #     magmag="int(10*datum.mag)"
).project(
    type='conicConformal',
    center=[8, -3],
def write():
    st.header("FIFA Players Across the World")
    st.write("""Let's explore the distribution of footballers around the world.
                Hover over the map to see player stats for different countries
                grouped by player nationality.""")

    # Load in the data
    fifa_country_agg = load_data('data/clean_fifa_country_aggs.csv')
    continents_zoom_params = load_continent_zoom_params()
    continents = list(continents_zoom_params.keys())

    # Add sliders and checkboxes for users to configure visualization
    player_stats_dict, player_stats_labels, player_stats_columns = load_player_stats(
    )
    agg_functions = ['Mean', 'Min', 'Max']

    # Show results for top N countries
    num_countries = fifa_country_agg.shape[0]
    st.markdown('### Show Top N Countries')
    top_countries_count = st.slider('N', 0, num_countries, num_countries)

    # Select continent to zoom into on map
    select_continent = st.selectbox('Continent',
                                    options=continents,
                                    index=continents.index('All'))
    st.subheader("Map: %s" % select_continent)

    # Select which player stats to show
    st.sidebar.markdown('### Show Player Stats')
    show_player_stats = st.sidebar.multiselect(
        'Show in Tooltip and Table',
        options=player_stats_labels,
        default=['Age', 'Overall Rating (0-100)', 'Potential Rating (0-100)'])

    # Select which aggregate functions to include
    st.sidebar.markdown('### Show Aggregate Functions')
    agg_functions_checkbox = {}
    for a in agg_functions:
        agg_functions_checkbox[a] = st.sidebar.checkbox(a, value=a in ['Mean'])

    # Select how to determine top N countries
    st.sidebar.markdown('### Top N Countries Based On')
    top_countries_attr = st.sidebar.selectbox('Player Stat',
                                              options=player_stats_labels,
                                              index=3)
    top_countries_agg = st.sidebar.selectbox('Using', options=agg_functions)
    top_countries_order = st.sidebar.selectbox(
        'Order', options=['Ascending', 'Descending'], index=1)

    # Draw the world map of FIFA 19 player nationalities
    # source: https://altair-viz.github.io/gallery/index.html#maps

    # Data to show based on user selections
    show_df = fifa_country_agg.sort_values(
        by='%s_%s' %
        (player_stats_dict.get(top_countries_attr), top_countries_agg.lower()),
        ascending=top_countries_order == 'Ascending').head(top_countries_count)

    # Data generators for the background
    sphere = alt.sphere()
    graticule = alt.graticule()

    # Source of land data
    source = alt.topo_feature(data.world_110m.url, 'countries')

    # Layering and configuring the components
    background = alt.layer(
        alt.Chart(sphere).mark_geoshape(fill='lightblue'),
        alt.Chart(graticule).mark_geoshape(stroke='white', strokeWidth=0.2),
        alt.Chart(source).mark_geoshape(
            fill='#9eb5a8', stroke='black')).project(
                type='equirectangular',  # map type
                scale=continents_zoom_params.get(select_continent)[0],
                center=continents_zoom_params.get(select_continent)
                [1:3]).properties(width=800,
                                  height=400).configure_view(stroke=None)

    hover = alt.selection(type='single',
                          on='mouseover',
                          nearest=True,
                          fields=['Latitude', 'Longitude'])

    # Get fields to show in tooltip
    tooltip_info = ['Nationality Country']
    for player_stat_label in show_player_stats:
        player_stat_column = player_stats_dict.get(player_stat_label)
        for agg_function, function_checked in agg_functions_checkbox.items():
            if function_checked:
                tooltip_info.append("%s_%s" %
                                    (player_stat_column, agg_function.lower()))

    base = alt.Chart(show_df).encode(longitude='Longitude:Q',
                                     latitude='Latitude:Q',
                                     tooltip=tooltip_info)

    points = base.mark_point().encode(
        color=alt.condition(~hover, alt.value('#014600'), alt.value('red')),
        size=alt.condition(~hover, alt.value(30),
                           alt.value(100))).add_selection(hover)

    st.write(background + points)

    st.subheader("Data Shown on Map")
    st.write(show_df[tooltip_info])
Exemple #3
0
# Note that the following generator is functionally similar to
# data = pd.DataFrame({'x': np.arange(0, 10, 0.1)})
data = alt.sequence(0, 10, 0.1, as_='x')

alt.Chart(data).transform_calculate(
    y='sin(datum.x)'
).mark_line().encode(
    x='x:Q',
    y='y:Q',
)

# --- Graticule Generator

import altair as alt

data = alt.graticule(step=[15, 15])

alt.Chart(data).mark_geoshape(stroke='black').project(
    'orthographic',
    rotate=[0, -45, 0]
)

# --- Sphere Generator
import altair as alt

sphere_data = alt.sphere()
grat_data = alt.graticule(step=[15, 15])

background = alt.Chart(sphere_data).mark_geoshape(fill='aliceblue')
lines = alt.Chart(grat_data).mark_geoshape(stroke='lightgrey')
Exemple #4
0
def generate_countries_map(data: pd.DataFrame,
                           date,
                           interactive: bool = False,
                           width: int = 600,
                           height: int = 600,
                           log_scale: bool = True) -> alt.Chart:

    fechas = data['fecha'].apply(lambda x: x.date())
    data = data[(fechas == date)]

    scale = alt.Scale(type='log', scheme='teals') if log_scale else alt.Scale(
        type='linear', scheme='teals')
    url_country_name = 'https://raw.githubusercontent.com/alisle/world-110m-country-codes/master/world-110m-country-codes.json'

    country_names = pd.read_json(url_country_name).drop('name', axis=1)
    country_data = get_country_data()
    country_data = country_names.join((country_data.set_index('code')),
                                      on='code')

    data = pd.merge(left=country_data,
                    right=data,
                    left_on='name',
                    right_on='pais').dropna()
    data = data.astype({'id': int, 'casos': int})

    sphere = alt.sphere()
    graticule = alt.graticule()
    source = alt.topo_feature(vd.data.world_110m.url, 'countries')

    sphere_chart = alt.Chart(
        sphere,
        title='Ubicación de los casos confirmados por país').mark_geoshape(
            fill='lightblue')
    graticule_chart = alt.Chart(graticule).mark_geoshape(stroke='white',
                                                         strokeWidth=0.5)
    countries_chart = (alt.Chart(source).mark_geoshape().encode(
        color=alt.Color('casos:Q', title='Casos', scale=scale, legend=None),
        tooltip=[
            alt.Tooltip('name:N', title='País'),
            alt.Tooltip('code:N', title='Código'),
            alt.Tooltip('casos:Q', title='Casos')
        ]).transform_lookup('id',
                            from_=alt.LookupData(
                                data=data,
                                key='id',
                                fields=['code', 'name', 'casos'])))

    single = alt.selection_single(
        on='mouseover', nearest=True, fields=['pais'],
        empty='all') if interactive else alt.selection_single()

    circle_chart = (alt.Chart(source).mark_circle(
        opacity=0.4, color='red').encode(
            longitude='lon:Q',
            latitude='lat:Q',
            size=(alt.condition(
                single,
                alt.Size('casos:Q',
                         scale=alt.Scale(range=[50, 4000]),
                         legend=None), alt.value(0))),
            tooltip=[
                alt.Tooltip('pais:N', title='País'),
                alt.Tooltip('code:N', title='Código'),
                alt.Tooltip('casos:Q', title='Casos')
            ]).transform_lookup('id',
                                from_=alt.LookupData(data=data,
                                                     key='id',
                                                     fields=[
                                                         'code', 'pais',
                                                         'casos', 'lat', 'lon'
                                                     ])).add_selection(single))

    final_chart = ((sphere_chart + graticule_chart + countries_chart +
                    circle_chart).project('naturalEarth1').properties(
                        width=800, height=500).configure_view(stroke=None))

    return final_chart