Exemple #1
0
def data_bar_jail():
    county_data = read_county_from_db(session.get(
        'current_state'), session.get('current_county'))

    # Create a label for the jail population to be included in the chart.
    # Result of lambda is a float, thus the slice notation is used
    county_data['total_jail_pop_label'] = county_data['total_jail_pop'].apply(lambda x: "{:,}".format(x)[:-2])
    county_data['total_jail_pretrial_label'] = county_data['total_jail_pretrial'].apply(lambda x: "{:,}".format(x)[:-2])
    
    # Create the chart
    jail = Chart(data=county_data, height=HEIGHT, width=WIDTH).mark_bar(color='#444760').encode(
        X('year:O', axis=Axis(title='Year')),
        Y('total_jail_pop', axis=Axis(title='Total Jail Population')),
        tooltip=[alt.Tooltip('year', title='Year'), alt.Tooltip(
            'total_jail_pop_label', title='Total jail population')]
    ).properties(
    title='Jail population in {}'.format(session.get('current_county'))
    ).interactive()

    # Create pre-trial chart to overlay on top 
    pre_trial = Chart(data=county_data, height=HEIGHT, width=WIDTH).mark_bar(
        color="#d66241", interpolate='step-after', line=True,
        ).encode(
        X('year:O', axis=Axis(title='Year')),
        Y('total_jail_pretrial', axis=Axis(title='Number of inmates')),
        tooltip=[alt.Tooltip('year', title='Year'), alt.Tooltip(
            'total_jail_pretrial_label', title='Pre-trial jail population')]
    ).properties(
    title='Pre-trial jail population in {}'.format(
        session.get('current_county'))
    ).interactive()

    chart = alt.layer(jail + pre_trial)

    return chart.to_json()
Exemple #2
0
def data_bar_jail():
    county_data = read_county_from_db(session.get('current_state'),
                                      session.get('current_county'))

    # Create the chart
    jail = Chart(data=county_data, height=HEIGHT,
                 width=WIDTH).mark_bar(color='#444760').encode(
                     X('year:O', axis=Axis(title='Year')),
                     Y('total_jail_pop',
                       axis=Axis(title='Total Jail Population')),
                     tooltip=[
                         alt.Tooltip('year', title='Year'),
                         alt.Tooltip('total_jail_pop',
                                     title='Total jail population')
                     ]).properties(title='Jail population in {}'.format(
                         session.get('current_county'))).interactive()

    # Create pre-trial chart to overlay on top
    pre_trial = Chart(data=county_data, height=HEIGHT, width=WIDTH).mark_bar(
        color="#d66241",
        interpolate='step-after',
        line=True,
    ).encode(X('year:O', axis=Axis(title='Year')),
             Y('total_jail_pretrial', axis=Axis(title='Number of inmates')),
             tooltip=[
                 alt.Tooltip('year', title='Year'),
                 alt.Tooltip('total_jail_pretrial',
                             title='Pre-trial jail population')
             ]).properties(title='Pre-trial jail population in {}'.format(
                 session.get('current_county'))).interactive()

    chart = alt.layer(jail + pre_trial)

    return chart.to_json()
Exemple #3
0
def county_scatter():
    state_name = session.get('current_state')
    county_name = session.get('current_county')

    # Connect to the database
    conn = sqlite3.connect('./db/incarceration.db')

    # Determine whether 2015 or 2016 has more data
    year_2016_nulls = test_nulls_for_year(2016, state_name, conn)

    year_2015_nulls = test_nulls_for_year(2015, state_name, conn)

    year = 2016  # default year

    # Test to see if 2015 has more non-null values
    if year_2016_nulls.iloc[0]['PercentNotNull'] < year_2015_nulls.iloc[0]['PercentNotNull']:
            year = 2015

    # Select prison population data for the entire state for the selected year
    all_counties_prison_pop = pd.read_sql_query(f"""SELECT county_name, total_pop, total_prison_pop, urbanicity
                                    FROM
                                    incarceration
                                    WHERE state = '{state_name}'
                                    AND year = {year};
                                    """, conn)

    # Select prison population data for the specific county for the selected year
    county_prison_pop = pd.read_sql_query(f"""SELECT county_name, total_pop, total_prison_pop, urbanicity
                                    FROM
                                    incarceration
                                    WHERE state = '{state_name}'
                                    AND county_name = '{county_name}'
                                    AND year = {year};
                                    """, conn)

    # Close connection
    conn.close()

    state_chart = Chart(data=all_counties_prison_pop, height=HEIGHT, width=WIDTH).mark_circle(size=70).encode(
        X('total_pop', axis=Axis(title='County population')),
        Y('total_prison_pop', axis=Axis(title='Total prison population')),
        color=alt.Color('urbanicity', legend=alt.Legend(title='Urbanicity')),
        size=alt.Color('total_pop', legend=alt.Legend(
            title='Total population')),
        tooltip=[alt.Tooltip('county_name', title='County'), alt.Tooltip(
            'total_pop', title='Total county population'), alt.Tooltip('total_prison_pop', title='Total prison population')],
    ).properties(
    title='Statewide prison population {}, {}'.format(year, state_name)).interactive()

    county_chart=Chart(data=county_prison_pop, height=HEIGHT, width=WIDTH).mark_square(
        size=250, fillOpacity=0.5, stroke='black', color='black').encode(
        X('total_pop', axis=Axis(title='County population')),
        Y('total_prison_pop', axis=Axis(title='Total prison population')),
        tooltip=['county_name', 'total_pop', 'total_prison_pop']
    ).interactive()

    chart=alt.layer(county_chart, state_chart)

    return chart.to_json()
Exemple #4
0
def create_bins(data):
    columns = ['Wind Speed (kts)', 'Rain (mm)', 'Temp (◦C)', 'Humidity (%)']
    filenumber = 1
    for items in columns:
        means = data.groupby(['Location'])[items].mean()
        means = means.to_frame()
        bins = pd.cut(means[items], 3, labels=['Low', 'Moderate', 'High'])
        bins = bins.to_frame()

        bracket = items.index('(')
        legend = items[:bracket]

        bins.columns.values[0] = 'Average ' + legend + 'Category '
        means.columns.values[0] = 'Average ' + items + ' Per Station'

        new_df = pd.concat([means, bins], axis=1, join_axes=[means.index])
        new_df.reset_index(level=0, inplace=True)
        new_df

        graph = alt.Chart(new_df).mark_bar().encode(
            x='Location',
            y=Y(means.columns.values[0], axis=Axis(format='f')),
            #https://github.com/altair-viz/altair/issues/191
            color=bins.columns.values[0])
        filename = 'templates/plot' + str(filenumber) + '.html'
        graph.savechart(filename)
        filenumber += 1
Exemple #5
0
 def data_line():
     chart = (Chart(data=sample_data.df_list, height=HEIGHT,
                    width=WIDTH).mark_line(color="green").encode(
                        X("name", axis=Axis(title="Sample")),
                        Y("data", axis=Axis(title="Value")),
                    ).interactive())
     return chart.to_json()
Exemple #6
0
def make_charts(df, color, x_axis_title, y_axis_title, title):
    chart = Chart(data=df, height=height,
                  width=width).mark_bar(color=color).encode(
                      X('name', axis=Axis(title=x_axis_title), sort=None),
                      Y('data',
                        axis=Axis(title=y_axis_title))).properties(title=title)
    return chart.to_json()
Exemple #7
0
def plot_sig_recon(sigs, recons, time=None):
    """
    sigs: channels x samples
    """
    long_dfs = []
    for sig_name, sig_array in zip(('sig', 'recon'), (sigs, recons)):
        df = pd.DataFrame(data=sig_array.T)
        if time is not None:
            sdf['time'] = time
        else:
            df['time'] = df.index
        df_long = pd.melt(df,
                          id_vars=('time', ),
                          var_name='signal',
                          value_name='magnitude')
        df_long['src'] = sig_name
        long_dfs.append(df_long)
    combined_dfs = pd.concat(long_dfs, ignore_index=True)
    combined_dfs.src = pd.Categorical(combined_dfs.src,
                                      categories=('sig', 'recon'),
                                      ordered=True)
    sig_chart = (Chart(combined_dfs).encode(
        X('time'), Y('magnitude'), Row('signal'),
        Column('src:O', scale=Scale(domain=('sig', 'recon'),
                                    type='ordinal'))).mark_point())
    return sig_chart
Exemple #8
0
 def data_waterfall():
     chart = (Chart(
         data=sample_data.df_water,
         width=WIDTH,
     ).mark_bar(color="gray").encode(
         X("Name", axis=Axis(title="Sample")),
         Y("Value", axis=Axis(title="Value")),
     ).interactive())
     return chart.to_json()
Exemple #9
0
def gen_var_barcharts_by_geo(data, var, agg_type, geo):
    data = aggregate_data(data, agg_type, geo)
    titlex = agg_type + ' of ' + var.split('_', 1)[1].replace('_', ' ')
    titley = geo.replace('_', ' ')
    bar_chart = alt.Chart(data).mark_bar().encode(x=X(var,
                                                      axis=Axis(title=titlex)),
                                                  y=Y((geo + ':O'),
                                                      axis=Axis(title=titley)))
    with open('./runs/%s_by_%s.json' % (var, geo), 'w') as outfile:
        json.dump(bar_chart.to_json(), outfile)
Exemple #10
0
def gen_custom_barchart(table, var):
    df = orca.get_table(table).to_frame(['parcel_id', var]).\
        groupby(var).count().reset_index()
    df.rename(columns={'parcel_id': 'count_' + table}, inplace=True)
    chart = alt.Chart(df).mark_bar().encode(x=X('count_' + table,
                                                axis=Axis(title='count_' +
                                                          table)),
                                            y=Y(var + ':O',
                                                axis=Axis(title=var)))
    with open('./runs/%s_by_%s.json' % (table, var), 'w') as outfile:
        json.dump(chart.to_json(), outfile)
Exemple #11
0
def gen_barcharts_n_largest(data, var, agg_type, geo, n):
    data = aggregate_data(data, agg_type, geo)
    max_data = data.nlargest(n, var).reset_index()
    titlex = agg_type + ' of ' + var.split('_', 1)[1].replace('_', ' ')
    titley = geo.replace('_', ' ')
    bar_chart = alt.Chart(max_data).mark_bar().encode(
        x=X(var, axis=Axis(title=titlex)),
        y=Y(geo + ':O', axis=Axis(title=titley)))
    with open('./runs/%s_%ss_with_max_%s.json' % (n, geo, var),
              'w') as outfile:
        json.dump(bar_chart.to_json(), outfile)
Exemple #12
0
def data_bar_prison():
    county_data = read_county_from_db(session.get('current_state'),
                                      session.get('current_county'))

    # Create the chart
    chart = Chart(
        data=county_data, height=HEIGHT,
        width=WIDTH).mark_bar(color='#2f3142').encode(
            X('year:O', axis=Axis(title='Year')),
            Y('total_prison_pop',
              axis=Axis(title='Total Prison Population'))).properties(
                  title='Prison population in {}'.format(
                      session.get('current_county')))
    return chart.to_json()
Exemple #13
0
def visualize(result, fileName):
    from altair import Chart, Color, Y, Scale

    #chart = LayeredChart(result)
    #chart += Chart().mark_line().encode(x='Search:O', y='Elapsed Time:Q')

    chart = Chart(result).mark_point().encode(x='Search:O',
                                              color='Problem:O',
                                              y=Y('Elapsed Time:Q',
                                                  scale=Scale(type='log')))
    #x='Search:O', color='Problem:O', y='Elapsed Time:Q')
    #    with open('out.html', 'w') as f:
    #       f.write(html)
    chart.savechart(fileName + ".l.svg")
Exemple #14
0
 def _encode_fields(self,
                    xfield,
                    yfield,
                    time_unit=None,
                    scale=Scale(zero=False)):
     """
     Encode the fields in Altair format
     """
     if scale is None:
         scale = Scale()
     xfieldtype = xfield[1]
     yfieldtype = yfield[1]
     x_options = None
     if len(xfield) > 2:
         x_options = xfield[2]
     y_options = None
     if len(yfield) > 2:
         y_options = yfield[2]
     if time_unit is not None:
         if x_options is None:
             xencode = X(xfieldtype, timeUnit=time_unit)
         else:
             xencode = X(xfieldtype,
                         axis=Axis(**x_options),
                         timeUnit=time_unit,
                         scale=scale)
     else:
         if x_options is None:
             xencode = X(xfieldtype)
         else:
             xencode = X(xfieldtype, axis=Axis(**x_options), scale=scale)
     if y_options is None:
         yencode = Y(yfieldtype, scale=scale)
     else:
         yencode = Y(yfieldtype, axis=Axis(**y_options), scale=scale)
     return xencode, yencode
Exemple #15
0
def pretrial_jail_chart():
    county_data = read_county_from_db(session.get('current_state'),
                                      session.get('current_county'))

    chart = Chart(data=county_data, height=HEIGHT, width=WIDTH).mark_line(
        color="#08080B",
        interpolate='step-after',
        line=True,
    ).encode(X('year:O', axis=Axis(title='Year')),
             Y('total_jail_pretrial', axis=Axis(title='Number of inmates')),
             tooltip=[
                 'year', 'total_jail_pretrial'
             ]).properties(title='Pre-trial jail population in {}'.format(
                 session.get('current_county'))).interactive()
    return chart.to_json()
Exemple #16
0
def plot_signals(sigs, time=None):
    """
    sigs: channels x samples
    """
    df = pd.DataFrame(data=sigs.T)
    if time is not None:
        df['time'] = time
    else:
        df['time'] = df.index
    df_long = pd.melt(df,
                      id_vars=('time', ),
                      var_name='signal',
                      value_name='magnitude')
    sig_chart = (Chart(df_long).encode(X('time'), Y('magnitude'),
                                       Row('signal')).mark_line())
    return sig_chart
Exemple #17
0
def gen_var_scatters(data, var1, var2, agg1, agg2, geo_points, geo_large):
    colors = data.groupby(geo_points).min().reset_index()
    colors = colors[[geo_points, geo_large]]
    data_1 = aggregate_data(data, agg1, geo_points)[[var1, geo_points]]
    data_2 = aggregate_data(data, agg2, geo_points)[[var2, geo_points]]
    data = pd.merge(data_1, data_2, on=geo_points, how='left')
    data = pd.merge(data, colors, on=geo_points, how='left')
    titlex = agg1 + ' of ' + var1.split('_', 1)[1].replace('_',
                                                           ' ') + ' by zone'
    titley = agg2 + ' of ' + var2.split('_', 1)[1].replace('_',
                                                           ' ') + ' by zone'
    scatter = alt.Chart(data).mark_point().encode(
        x=X(var1, axis=Axis(title=titlex)),
        y=Y(var2, axis=Axis(title=titley)),
        color=geo_large + ':N',
    )
    with open('./runs/%s_vs_%s.json' % (var2, var1), 'w') as outfile:
        json.dump(scatter.to_json(), outfile)
Exemple #18
0
def plotter(name, x, label):
    df = pandas.DataFrame({
        "x": [el[0] for el in x],
        "y": [el[1] for el in x],
        "z": [el[2] for el in x]
    })
    chart = alt.Chart(
        df, title=label[2], width=60, height=600).mark_bar().encode(
            column=Column('x', title=label[3], spacing=75),
            x=X('z', title=""),
            y=Y('y', title=label[4]),
            color=Color(
                'z', title=label[5],
                scale=Scale(range=['#6fbf4a', '#5f249f']))).configure_view(
                    strokeWidth=0.0, width=300)

    chart = chart.configure_title(fontSize=25, offset=15)
    chart.save(f"{name}.html")
Exemple #19
0
def data_bar_prison():
    county_data = read_county_from_db(session.get(
        'current_state'), session.get('current_county'))

    # Create a label for the prison population to be included in the chart.
    # Result of lambda is a float, thus the slice notation is used
    county_data['total_prison_pop_label'] = county_data['total_prison_pop'].apply(lambda x: "{:,}".format(x)[:-2])

    # Create the chart
    chart = Chart(data=county_data, height=HEIGHT, width=WIDTH).mark_bar(color='#2f3142').encode(
        X('year:O', axis=Axis(title='Year')),
        Y('total_prison_pop', axis=Axis(title='Total Prison Population')),
        tooltip=[alt.Tooltip('year', title='Year'), alt.Tooltip(
            'total_prison_pop_label', title='Total prison population')]
    ).properties(
    title='Prison population in {}'.format(session.get('current_county'))
    ).interactive()

    return chart.to_json()
Exemple #20
0
def chartLog():
    "Display chart for selected log"

    db_folder = app.config['UPLOAD_FOLDER']
    logFiles = glob.glob('%s/*.db' % db_folder)

    form = ChartLog()
    form.logFile.choices = [(f, f) for f in logFiles]
    form.chartId.choices = [(q['id'], q['id']) for q in queries.graphs]
    try:
        dbname = app.dbname
        if os.path.exists(dbname):
            form.logFile.data = dbname
    except:
        pass

    if not form.validate_on_submit():
        return render_template('chartLog.html',
                               chart={},
                               dbName=None,
                               form=form)

    dbname = os.path.join(form.logFile.data)
    if not os.path.exists(dbname):
        flash('Database does not exist', 'error')
        return render_template('error.html', title='Database error')

    try:
        conn = sqlite3.connect(dbname)
    except Exception as e:
        app.logger.error(traceback.format_exc())
        flash('Error: %s' % (str(e)), 'error')
        return render_template('error.html',
                               title='Error in database reporting')

    chartId = form.chartId.data
    charts = [q for q in queries.graphs if q['id'] == chartId]
    if not charts:
        flash("Error: logic error couldn't find chartId", 'error')
        return render_template(
            'error.html', title='Error in in configuration of chart reports')

    q = charts[0]
    app.logger.debug("running chart query: %s - %s" % (q['title'], q['sql']))
    start = datetime.now()
    try:
        df = pd.read_sql_query(q['sql'], conn)
    except Exception as e:
        flash('Error: %s' % (str(e)), 'error')
        return render_template('error.html',
                               title='Error in database reporting')

    end = datetime.now()
    delta = end - start
    if q['graph_type'] == 'line':
        chart = Chart(data=df, height=HEIGHT, width=WIDTH).mark_line().encode(
            X(q['x']['field'],
              axis=Axis(title=q['x']['title'], labelOverlap='greedy')),
            Y(q['y']['field'], axis=Axis(title=q['y']['title'])))
    else:
        chart = Chart(data=df, height=HEIGHT, width=WIDTH).mark_bar().encode(
            X(q['x']['field'],
              axis=Axis(title=q['x']['title'], labelOverlap='greedy')),
            Y(q['y']['field'], axis=Axis(title=q['y']['title'])))
    data = {
        'id': "chart",
        'data': chart.to_json(),
        'title': q['title'],
        'explanation': q['explanation'],
        'sql': q['sql'],
        'time_taken': str(delta)
    }
    return render_template('chartLog.html',
                           chart=data,
                           dbName=dbname,
                           form=form)
Exemple #21
0
def data_waterfall():
    chart = Chart(data.df_water).mark_bar(color='lightgreen').encode(
        X('Name', axis=Axis(title='Sample')),
        Y('Value', axis=Axis(title='Value')))
    return chart.to_json()
Exemple #22
0
def data_line():
    chart = Chart(data=data.df_list, height=HEIGHT,
                  width=WIDTH).mark_line().encode(
                      X('name', axis=Axis(title='Sample')),
                      Y('data', axis=Axis(title='Value')))
    return chart.to_json()
Exemple #23
0
# coding=utf-8
from dataviz import Dataviz
from altair import Chart, load_dataset, X, Y

df = load_dataset('seattle-weather')

dataviz = Dataviz("Seattle Weather")

overview_chart = Chart(df).mark_bar(stacked='normalize').encode(
    X('date:T', timeUnit='month'),
    Y('count(*):Q'),
    color='weather',
)

dataviz.add("commented", title="Overview", charts=[overview_chart],
            comment= "Lorem ipsum dolor sit amet, cum pertinacia definitionem an. His ne oratio facilis voluptatum, nam lorem putant qualisque ad. Mea in affert nostrum. Mea cu ignota adipiscing. Omnis mnesarchum vix cu, omnes impedit democritum nec te. Malorum urbanitas consectetuer ei eam, no sea paulo tollit detracto."
            )

chart_a = Chart(df).mark_bar().encode(
    X('precipitation', bin=True),
    Y('count(*):Q')
)

chart_b = Chart(df).mark_line().encode(
    X('date:T', timeUnit='month'),
    Y('average(precipitation)')
)

chart_c = Chart(df).mark_line().encode(
    X('date:T', timeUnit='month'),
    Y('average(temp_max)'),
Exemple #24
0
df_dados = result.loc[:][['Rodada','Temporada','Time','Resultado']].copy()

df_dados.sort_values(by=['Rodada'] ,ascending=True , inplace=True)

df_dados['Acumulado'] = df_dados.groupby(['Temporada','Time'])[['Time','Resultado']].cumsum()

x = st.slider('Selecione o ano',2012, 2019, (2012))

df_dados = df_dados[df_dados['Temporada'] == x].reset_index(drop=True)

st.dataframe(df_dados)

bars = alt.Chart(df_dados).mark_bar().encode(
    x=X('2:Q',axis=Axis(title='Brasileirao')),
    y=Y('0:Q',axis=Axis(title='Times'))
    ).properties(
        width=650, 
        height=400
    )

bar_plot = st.altair_chart(bars)

def plot_bar_animated_altair(df,week):
    bars = alt.Chart(df, title="Ranking por Rodada :"+week)

for week in range(1,39):
  teste = str(week)
  bars = plot_bar_animated_altair(df_dados[df_dados['Rodada']== teste],teste)
  time.sleep(0.01) 
  
Exemple #25
0
def course_grade():
    session_id = os.environ.get("SESSION_ID")
    selected_course = session.get('selected_course', None)
    # show all course grades if haven't selected course from dropdown
    if selected_course == None:
        source = pd.read_sql(grade_calculations.Co_grade_query(user_id=session_id).statement, db.session.bind)

        # make chart here
        bar = alt.Chart(
            data=source).mark_bar().encode(
            Y('cograde:Q',
              scale=Scale(domain=(0, 5))
              ),
            alt.X('course:N',
                    sort=alt.EncodingSortField(field= "cograde", op="sum", order = "descending")),
            #color=alt.Color('course:N', legend=None))#.interactive()
            color=alt.Color('major:N'))#.interactive()


        line = alt.Chart(source).mark_rule(color='red').encode(
                 y='mean(cograde):Q'
                )
        chart = alt.layer(
            bar, line
        ).properties(
            width=480, height=336
        )

        # always return to json.
        return chart.to_json()
    else:
        # show individual course trend for the selected course from dropdown list
        source = grade_calculations.co_grade_over_time(user_id=session_id, course=selected_course)

        # make interactive chart
        # Create a selection that chooses the nearest point & selects based on x-value
        nearest = alt.selection(type='single', nearest=True, on='mouseover',
                                fields=['Date'], empty='none')

        # The basic line
        line = alt.Chart(source).mark_line().encode(
            x='Date:N',
            y='Course Grade:Q',
        )

        # Transparent selectors across the chart. This is what tells us
        # the x-value of the cursor
        selectors = alt.Chart(source).mark_point().encode(
            x='Date:N',
            opacity=alt.value(0),
        ).add_selection(
            nearest
        )

        # Draw points on the line, and highlight based on selection
        points = line.mark_point().encode(
            opacity=alt.condition(nearest, alt.value(1), alt.value(0))
        )

        # Draw text labels near the points, and highlight based on selection
        text = line.mark_text(align='left', dx=5, dy=-5).encode(
            text=alt.condition(nearest, 'Course Grade:Q', alt.value(' '))
        )

        # Draw a rule at the location of the selection
        rules = alt.Chart(source).mark_rule(color='gray').encode(
            x='Date:N',
        ).transform_filter(
            nearest
        )

        # Put the five layers into a chart and bind the data
        chart = alt.layer(
            line, selectors, points, rules, text
        ).properties(
            width=500, height=336
        )

        return chart.to_json()
Exemple #26
0
import pandas as pd
import numpy as np
from altair import Chart, X, Y, SortField, Detail, Axis

csv_path = "../data/dropped-frames.csv"
df = pd.read_csv(csv_path, parse_dates=["Dropped Frame Start", "Dropped Frame End"], low_memory=False)
data = df[['Officer ID', 'Dropped Frame Start', 'Duration', 'FPS', 'Dropped Frames', 'Resolution', 'File Size', 'File Name', 'Frame Range', 'Player Time Range']]
data = data.rename(columns={'Dropped Frame Start': 'Timestamp'})

## Overview
Chart(data.sample(100)).configure_axis(gridColor='#ccc').mark_line(interpolate='linear').encode(
    X(field='Timestamp', type='temporal', timeUnit='yearmonth', axis=Axis(title=' ', ticks=6, labelAngle=0, tickSizeEnd=0, tickSize=0, tickPadding=10)),
    Y('sum(Duration)', axis=Axis(title='Seconds lost'))
).savechart('test.svg')
Exemple #27
0
def data_bar():
    chart = Chart(data=sample_data.df_list, height=HEIGHT,
                  width=WIDTH).mark_bar(color='yellow').encode(
                      X('name', axis=Axis(title='Sample')),
                      Y('data', axis=Axis(title='Value'))).interactive()
    return chart.to_json()
Exemple #28
0
def data_waterfall():
    chart = Chart(sample_data.df_water).mark_bar(color='gray').encode(
        X('Name', axis=Axis(title='Sample')),
        Y('Value', axis=Axis(title='Value'))).interactive()
    return chart.to_json()