def __init__(self, data_path, batch_size, num_thread, crop, rali_cpu=True): super(trainPipeline, self).__init__(batch_size, num_thread, rali_cpu=rali_cpu) world_size = 1 local_rank = 0 self.input = ops.FileReader(file_root=data_path, shard_id=local_rank, num_shards=world_size, random_shuffle=True) rali_device = 'cpu' if rali_cpu else 'gpu' decoder_device = 'cpu' if rali_cpu else 'mixed' device_memory_padding = 211025920 if decoder_device == 'mixed' else 0 host_memory_padding = 140544512 if decoder_device == 'mixed' else 0 self.decode = ops.ImageDecoderRandomCrop( device=decoder_device, output_type=types.RGB, device_memory_padding=device_memory_padding, host_memory_padding=host_memory_padding, random_aspect_ratio=[0.8, 1.25], random_area=[0.1, 1.0], num_attempts=100) self.res = ops.Resize(device=rali_device, resize_x=crop, resize_y=crop) self.cmnp = ops.CropMirrorNormalize( device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW, crop=(crop, crop), image_type=types.RGB, mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) self.coin = ops.CoinFlip(probability=0.5) print('rali "{0}" variant'.format(rali_device))
def __init__(self, data_path, batch_size, num_thread, crop, rali_cpu=True): super(valPipeline, self).__init__(batch_size, num_thread, rali_cpu=rali_cpu) world_size = 1 local_rank = 0 self.input = ops.FileReader(file_root=data_path, shard_id=local_rank, num_shards=world_size, random_shuffle=True) rali_device = 'cpu' if rali_cpu else 'gpu' decoder_device = 'cpu' if rali_cpu else 'mixed' device_memory_padding = 211025920 if decoder_device == 'mixed' else 0 host_memory_padding = 140544512 if decoder_device == 'mixed' else 0 self.decode = ops.ImageDecoder(device=decoder_device, output_type=types.RGB) self.res = ops.Resize(device=rali_device, resize_x=256, resize_y=256) self.centrecrop = ops.CentreCrop(crop=(crop, crop)) self.cmnp = ops.CropMirrorNormalize( device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW, crop=(crop, crop), image_type=types.RGB, mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) print('rali "{0}" variant'.format(rali_device))
def __init__(self, batch_size, num_threads, device_id, data_dir, rali_cpu=True, prefetch_queue_depth=2): super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, rali_cpu=rali_cpu, prefetch_queue_depth=prefetch_queue_depth) world_size = 1 local_rank = 0 resize_width = 300 resize_height = 300 self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True) rali_device = 'cpu' if rali_cpu else 'gpu' decoder_device = 'cpu' if rali_cpu else 'mixed' self.decode = ops.ImageDecoder(device=decoder_device, output_type=types.RGB) self.res = ops.Resize(device=rali_device, resize_x=resize_width, resize_y=resize_height) self.rain = ops.Rain(rain=0.5)
def __init__(self, batch_size, num_threads, device_id, data_dir, crop, rali_cpu=True): super(HybridTrainPipe, self).__init__(batch_size, num_threads, device_id, seed=12 + device_id, rali_cpu=rali_cpu) world_size = 1 local_rank = 0 self.input = ops.FileReader(file_root=data_dir, shard_id=local_rank, num_shards=world_size, random_shuffle=True) rali_device = 'cpu' if rali_cpu else 'gpu' decoder_device = 'cpu' if rali_cpu else 'mixed' device_memory_padding = 211025920 if decoder_device == 'mixed' else 0 host_memory_padding = 140544512 if decoder_device == 'mixed' else 0 self.decode = ops.ImageDecoderRandomCrop( device=decoder_device, output_type=types.RGB, device_memory_padding=device_memory_padding, host_memory_padding=host_memory_padding, random_aspect_ratio=[0.8, 1.25], random_area=[0.1, 1.0], num_attempts=100) self.res = ops.Resize(device=rali_device, resize_x=crop, resize_y=crop) # #self.res = ops.Crop(crop=(crop, crop)) # self.rain = ops.Rain(rain=0.5) # self.blur = ops.Blur(blur=0.5) # self.jitter = ops.Jitter() # self.contrast =ops.Rotate(angle=20) # self.hue = ops.Hue() # self.blend = ops.Blend(blend=0.5) # self.snp = ops.SnPNoise(snpNoise = 0.5) # self.ving = ops.Vignette(vignette = 0.2) # self.exp = ops.Exposure(exposure = 0.2) # #self.wf = ops.WarpAffine() # self.sat = ops.Saturation() self.cmnp = ops.CropMirrorNormalize( device="gpu", output_dtype=types.FLOAT, output_layout=types.NCHW, crop=(crop, crop), image_type=types.RGB, mean=[0.485 * 255, 0.456 * 255, 0.406 * 255], std=[0.229 * 255, 0.224 * 255, 0.225 * 255]) self.coin = ops.CoinFlip(probability=0.5) print('rali "{0}" variant'.format(rali_device))