def build_labeled_dataset(self, num_samples=100, seed=0):
        """Builds a problem-specific initial dataset.

    By default, samples sequences randomly and evaluates the problem on those
    sequences. Can be overwritten by problem-specific dataset generators.

    Args:
      num_samples: The number of samples to return.
      seed: An optional integer seed or np.random.RandomState to be used
        for the random number generator.

    Returns:
      A tf.data.Dataset with data_utils.DatasetSamples.
    """
        structures = self.domain.sample_uniformly(num_samples, seed=seed)
        rewards = self(structures)
        return utils.dataset_from_tensors(
            data_utils.DatasetSample(structure=structures, reward=rewards))
Exemple #2
0
 def to_dataset(self):
     """Converts the population to a `tf.data.Dataset` with `DatasetSample`s."""
     structures, rewards = self.to_structures_and_rewards()
     return utils.dataset_from_tensors(
         DatasetSample(structure=structures, reward=rewards))