Exemple #1
0
    def test_netflow_amplpy(self):
        dat = _netflow_input_pdf.copy_to_ampl(_netflow_dat,
                                              field_renamings={
                                                  ("arcs", "Capacity"):
                                                  "capacity",
                                                  ("cost", "Cost"): "cost",
                                                  ("inflow", "Quantity"):
                                                  "inflow"
                                              })
        ampl = amplpy.AMPL()
        ampl.setOption('solver', 'gurobi')
        ampl.eval(_netflow_mod)
        _netflow_input_pdf.set_ampl_data(dat, ampl, {
            "nodes": "NODES",
            "arcs": "ARCS",
            "commodities": "COMMODITIES"
        })
        ampl.solve()

        sln = _netflow_sln_pdf.copy_from_ampl_variables({
            ('flow', 'Quantity'):
            ampl.getVariable("Flow")
        })
        sln.parameters.loc[0] = [
            'Total Cost', ampl.getObjective('TotalCost').value()
        ]

        self.assertTrue(_netflow_sln_pdf._same_data(sln, _netflow_sln_pandat))

        sln2 = _netflow_sln_pdf.copy_from_ampl_variables({
            ('flow', 'Quantity'): (ampl.getVariable("Flow"), lambda v: v > 30)
        })
        sln3 = _netflow_sln_pdf.copy_from_ampl_variables({
            ('flow', 'Quantity'):
            (ampl.getVariable("Flow"), lambda v: 0 < v <= 30)
        })
        sln2.parameters.loc[0] = [
            'Total Cost', ampl.getObjective('TotalCost').value()
        ]
        sln3.parameters.loc[0] = [
            'Total Cost', ampl.getObjective('TotalCost').value()
        ]

        self.assertTrue(len(sln2.flow) and len(sln3.flow))
        self.assertFalse(_netflow_sln_pdf._same_data(sln, sln2))
        self.assertFalse(_netflow_sln_pdf._same_data(sln, sln2))
        sln2.flow = sln2.flow.append(sln3.flow)
        self.assertTrue(_netflow_sln_pdf._same_data(sln, sln2))
Exemple #2
0
    def solve(self, prob=None):
        try:
            ampl_env = amplpy.Environment()
            ampl = amplpy.AMPL(ampl_env)

            ampl.setOption('solver', 'gurobi')

            model_dir = os.path.normpath('./ampl_models')
            ampl.read(os.path.join(model_dir, '/ampl_m.mod'))

            departs=['1','2','3','4']
            arrivees=['1','2','3','4']

            df = amplpy.DataFrame('depart')
            df.setColumn(self,'depart')
            ampl.setData(df, departs)

            df = amplpy.DataFrame('arrivee')
            df.setColumn(self,'arrivee')
            ampl.setData(df, arrivees)

            df = amplpy.DataFrame(('depart','arrivee'), 'dst')

            df.setValues({
                (depart, arrivee): self.matrice[i][j]
                for i, depart in enumerate(departs)
                for j, arrivee in enumerate(arrivees)})

            ampl.setData(self, df)
            ampl.solve()
            self.done = True


            print('Objective: {}'.format(ampl.getObjective('Total_Cost').value()))
            solution = ampl.getVariable('Buy').getValues()
            print('Solution retournée: \n' + str(solution))

        except Exception as error:
            print(error)
            raise
Exemple #3
0
    def solve(self):

        #----------Initialisation de l'environnement----------#

        ampl_env = amplpy.Environment()
        ampl_path = os.path.normpath(emplacement_AMPL)
        ampl_env = amplpy.Environment(ampl_path)
        ampl = amplpy.AMPL(ampl_env)

        #--------------------Configuration--------------------#

        ampl.setOption('solver', 'cplex')

        #-------------------Lecture du .mod-------------------#

        model_dir = os.path.normpath(emplacement_AMPL)
        ampl.read(os.path.join(model_dir, model))

        #----------------------Paramètre----------------------#
        """ Param n: Nombre de département """
        df = ampl.getParameter('n')
        df.set(self.n)
        """ Param m: Nombre maximal de rangée """
        df = ampl.getParameter('m')
        df.set(self.m)
        """ Param d: Largeur des rangées """
        df = ampl.getParameter('d')
        df.set(self.d)
        """ Param L: Somme des longueurs de tous les département """
        df = ampl.getParameter('L')
        df.set(self.L)
        """ Coût du déménagement d'un département de sa 
            position actuelle => sa nouvelle position """
        df = ampl.getParameter('cd')
        df.set(self.cd)
        """ Param Lon_u: Longueur MAX de l'usine """
        df = ampl.getParameter('Lon_u')
        df.set(self.lon_u)
        """ Param Lar_u: Largeur MAX de l'usine """
        df = ampl.getParameter('Lar_u')
        df.set(self.lar_u)
        """ Set K: Ensemble des département """
        df = amplpy.DataFrame('K')
        df.setColumn('K', self.set_K)
        ampl.setData(df, 'K')
        """ Param lon: Longueur du département k """
        df = amplpy.DataFrame("K", "lon")
        df.setValues({I: self.lon[i] for i, I in enumerate(self.set_K)})
        ampl.setData(df)
        """ Position horizontale actuelle du département k """
        df = amplpy.DataFrame("K", "Xa")
        df.setValues({I: self.Xa[i] for i, I in enumerate(self.set_K)})
        ampl.setData(df)
        """ Position verticale actuelle du département k """
        df = amplpy.DataFrame("K", "Ya")
        df.setValues({I: self.Ya[i] for i, I in enumerate(self.set_K)})
        ampl.setData(df)
        """ Param c: Coût du déplacement de i => j """
        df = amplpy.DataFrame(('I', 'J'), 'c')
        df.setValues({(I, J): self.poids[(len(self.set_K)) * i + j]
                      for i, I in enumerate(self.set_K)
                      for j, J in enumerate(self.set_K)})
        ampl.setData(df)
        ampl.solve()

        #----------------------Variables----------------------#
        """ Var X: Position horizontale du département i """
        X = ampl.getVariable('X')
        X_val = X.getValues()
        X_val_dic = X_val.toDict()
        """ Var Y: Position verticale du département i """
        Y = ampl.getVariable('Y')
        Y_val = Y.getValues()
        Y_val_dic = Y_val.toDict()
        """ Var Aij: Position relative; =1 si i est dans 
            la même rangée à la gauche de j, 0 sinon """
        A = ampl.getVariable('Aij')
        A_val = A.getValues()
        A_val_dic = A_val.toDict()
        """ Var Bij: Position relative; =1 si i et j ne sont pas dans 
            la même rangée et que i est en dessous de j, 0 sinon """
        B = ampl.getVariable('Bij')
        B_val = B.getValues()
        B_val_dic = B_val.toDict()
        """ Var dx: Distance horizontale entre i et j """
        dx = ampl.getVariable('dx')
        dx_val = dx.getValues()
        dx_val_dic = dx_val.toDict()
        """ Var dy: Distance verticale entre i et j """
        dy = ampl.getVariable('dy')
        dy_val = dy.getValues()
        dy_val_dic = dy_val.toDict()
        """ Var ddx: Distance de déménagement horizontale """
        ddx = ampl.getVariable('ddx')
        ddx_val = ddx.getValues()
        ddx_val_dic = ddx_val.toDict()
        """ Var dxy: Distance de déménagement verticale """
        ddy = ampl.getVariable('ddy')
        ddy_val = ddy.getValues()
        ddy_val_dic = ddy_val.toDict()

        return (X_val_dic, Y_val_dic, A_val_dic, B_val_dic, dx_val_dic,
                dy_val_dic, ddx_val_dic, ddy_val_dic, X_val, Y_val, A_val,
                B_val, dx_val, dy_val, ddx_val, ddy_val, model)
    def solve(racingdata):
        ampl_env = amplpy.Environment()
        ampl = amplpy.AMPL(ampl_env)

        ampl.setOption('solver', 'gurobi')
        ampl.setOption(
            'gurobi_options', "mipfocus 1"
            "relax 0"
            "timelim 7200 "
            "tunetimelimit 60 ")

        model_dir = os.path.normpath('./ampl_models/Trend3D')
        ampl.read(os.path.join(model_dir, 'f1aiTyre.mod'))

        listlaps = list(range(1, racingdata.totalLaps + 1))
        listwear = list(
            range(1,
                  (min(len(racingdata.lapData[0]), len(racingdata.lapData[1]),
                       len(racingdata.lapData[2])) + 1)))
        listtyres = racingdata.compounds.values()

        dftyres = amplpy.DataFrame('tyres')
        dftyres.setColumn('tyres', listtyres)
        ampl.setData(dftyres, 'tyres')

        dfwear = amplpy.DataFrame('stints')
        dfwear.setColumn('stints', listwear)
        ampl.setData(dfwear, 'stints')

        dflaps = amplpy.DataFrame('laps')
        dflaps.setColumn('laps', listlaps)
        ampl.setData(dflaps, 'laps')

        totallaps = ampl.getParameter('totalLaps')
        totallaps.set(racingdata.totalLaps)

        tyrelifespan = ampl.getParameter('tyreLifeSpan')
        tyrelifespan.set(len(listwear))

        pittime = ampl.getParameter('pitTime')
        pittime.set(racingdata.pitTime)

        df = amplpy.DataFrame(('tyres', 'wear'), 'usage')

        df.setValues({(tyre, wear): racingdata.futureTyreUsageData[i][j]
                      for i, tyre in enumerate(listtyres)
                      for j, wear in enumerate(listwear)})
        ampl.setData(df)
        df = amplpy.DataFrame('tyres', ['avg', 'coeff'])
        df.setValues(racingdata.trendlinedata())
        ampl.setData(df)
        print(racingdata.futureTyreUsageData)
        ampl.solve()

        solution = Decision(racingdata)

        pit = ampl.getVariable('pit')
        dfpit = pit.getValues()
        chosen = {int(row[1]): row[0] for row in dfpit if row[2] == 1}

        solution.pitDecision = chosen

        compound = ampl.getVariable('compound')
        dfcompound = compound.getValues()
        chosen = {
            int(row[2]): [row[0], int(row[1])]
            for row in dfcompound if row[3] == 1
        }
        solution.compoundStrategy = chosen

        time = ampl.getVariable('time')
        dftime = time.getValues()
        for row in dftime:
            for k, v in racingdata.compounds.items():
                if v == row[0]:
                    solution.lapTimes[k].append(row[2])
        return solution
Exemple #5
0
    def test_diet_amplpy(self):
        dat = _diet_input_pdf.copy_to_ampl(
            _diet_dat,
            field_renamings={
                ("foods", "Cost"): "cost",
                ("categories", "Min Nutrition"): "n_min",
                ("categories", "Max Nutrition"): "n_max",
                ("nutrition_quantities", "Quantity"): "amt",
                ("nutrition_quantities", "Other Quantity"): "other_amt"
            })
        self.assertTrue({"n_min",
                         "n_max"}.issubset(dat.categories.toPandas().columns))
        ampl = amplpy.AMPL()
        ampl.setOption('solver', 'gurobi')
        ampl.eval(_diet_mod)
        _diet_input_pdf.set_ampl_data(dat, ampl, {
            "categories": "CAT",
            "foods": "FOOD"
        })
        ampl.solve()

        sln = _diet_sln_pdf.copy_from_ampl_variables({
            ("buy_food", "Quantity"):
            ampl.getVariable("Buy"),
            ("consume_nutrition", "Quantity"):
            ampl.getVariable("Consume")
        })
        sln.parameters.loc[0] = [
            'Total Cost',
            ampl.getObjective('Total_Cost').value()
        ]

        _missing_field_pdf = PanDatFactory(
            **{
                t: [pks, (["Max Nutrition"] if t == "categories" else dfs)]
                for t, (pks, dfs) in _diet_input_pdf.schema().items()
            })
        dat = _missing_field_pdf.copy_to_ampl(
            _diet_dat,
            field_renamings={
                ("foods", "Cost"): "cost",
                ("categories", "Min Nutrition"): "n_min",
                ("categories", "Max Nutrition"): "n_max",
                ("nutrition_quantities", "Quantity"): "amt",
                ("nutrition_quantities", "Other Quantity"): "other_amt"
            })
        self.assertTrue({"n_min",
                         "n_max"}.issubset(dat.categories.toPandas().columns))
        ampl = amplpy.AMPL()
        ampl.setOption('solver', 'gurobi')
        ampl.eval(_diet_mod)
        _diet_input_pdf.set_ampl_data(dat, ampl, {
            "categories": "CAT",
            "foods": "FOOD"
        })
        ampl.solve()
        sln_2 = _diet_sln_pdf.copy_from_ampl_variables({
            ("buy_food", "Quantity"):
            ampl.getVariable("Buy"),
            ("consume_nutrition", "Quantity"):
            ampl.getVariable("Consume")
        })
        sln_2.parameters.loc[0] = [
            'Total Cost',
            ampl.getObjective('Total_Cost').value()
        ]
        self.assertTrue(_diet_sln_pdf._same_data(sln, sln_2))

        diet_dat_two = _diet_input_pdf.copy_to_tic_dat(_diet_dat)
        for r in diet_dat_two.nutrition_quantities.values():
            r["Quantity"], r["Other Quantity"] = [0.5 * r["Quantity"]] * 2
        diet_dat_two = pan_dat_maker(_diet_input_pdf.schema(), diet_dat_two)

        dat = _diet_input_pdf.copy_to_ampl(
            diet_dat_two,
            field_renamings={
                ("foods", "Cost"): "cost",
                ("categories", "Min Nutrition"): "n_min",
                ("categories", "Max Nutrition"): "n_max",
                ("nutrition_quantities", "Quantity"): "amt",
                ("nutrition_quantities", "Other Quantity"): "other_amt"
            })
        ampl = amplpy.AMPL()
        ampl.setOption('solver', 'gurobi')
        ampl.eval(_diet_mod)
        _diet_input_pdf.set_ampl_data(dat, ampl, {
            "categories": "CAT",
            "foods": "FOOD"
        })
        ampl.solve()
        self.assertTrue("solved" == ampl.getValue("solve_result"))

        sln = _diet_sln_pdf.copy_from_ampl_variables({
            ("buy_food", "Quantity"):
            ampl.getVariable("Buy"),
            ("consume_nutrition", "Quantity"):
            ampl.getVariable("Consume")
        })
        sln.parameters.loc[0] = [
            'Total Cost',
            ampl.getObjective('Total_Cost').value()
        ]

        self.assertTrue(
            _diet_sln_pdf._same_data(sln, _diet_sln_pandat, epsilon=1e-5))

        dat = _diet_input_pdf.copy_to_ampl(
            _diet_dat, {
                ("foods", "Cost"): "cost",
                ("categories", "Min Nutrition"): "",
                ("categories", "Max Nutrition"): "n_max"
            }, ["nutrition_quantities"])
        self.assertFalse(hasattr(dat, "nutrition_quantities"))
        self.assertTrue({"n_min", "n_max"}.intersection(
            dat.categories.toPandas().columns) == {"n_max"})

        sln_tdf_2 = PanDatFactory(buy_food=[["Food"], ["Quantity"]],
                                  consume_nutrition=[["Category"], []])
        sln_tdf_2.set_default_value("buy_food", "Quantity", 1)
        sln_2 = sln_tdf_2.copy_from_ampl_variables({
            ("buy_food", False):
            ampl.getVariable("Buy"),
            ("consume_nutrition", False):
            (ampl.getVariable("Consume"), lambda x: x < 100)
        })
        self.assertTrue(set(sln_2.buy_food["Quantity"]) == {1})
        self.assertTrue(
            set(sln_2.buy_food["Food"]) == set(sln.buy_food["Food"]))
        self.assertTrue(len(sln_2.consume_nutrition) > 0)
        self.assertTrue(
            set(sln_2.consume_nutrition["Category"]) ==
            set(sln.consume_nutrition[sln.consume_nutrition["Quantity"] < 100]
                ["Category"]))

        diet_dat_two = _diet_input_pdf.copy_to_tic_dat(_diet_dat)
        diet_dat_two.categories["calories"] = [0, 200]
        diet_dat_two = pan_dat_maker(_diet_input_pdf.schema(), diet_dat_two)
        dat = _diet_input_pdf.copy_to_ampl(
            diet_dat_two,
            field_renamings={
                ("foods", "Cost"): "cost",
                ("categories", "Min Nutrition"): "n_min",
                ("categories", "Max Nutrition"): "n_max",
                ("nutrition_quantities", "Quantity"): "amt",
                ("nutrition_quantities", "Other Quantity"): "other_amt"
            })
        ampl = amplpy.AMPL()
        ampl.setOption('solver', 'gurobi')
        ampl.eval(_diet_mod)
        _diet_input_pdf.set_ampl_data(dat, ampl, {
            "categories": "CAT",
            "foods": "FOOD"
        })
        ampl.solve()
        self.assertTrue("infeasible" == ampl.getValue("solve_result"))

        diet_dat_two = _diet_input_pdf.copy_to_tic_dat(_diet_dat)
        for v in diet_dat_two.categories.values():
            v["Max Nutrition"] = float("inf")
        diet_dat_two.foods["hamburger"] = -1
        diet_dat_two = pan_dat_maker(_diet_input_pdf.schema(), diet_dat_two)
        dat = _diet_input_pdf.copy_to_ampl(
            diet_dat_two,
            field_renamings={
                ("foods", "Cost"): "cost",
                ("categories", "Min Nutrition"): "n_min",
                ("categories", "Max Nutrition"): "n_max",
                ("nutrition_quantities", "Quantity"): "amt",
                ("nutrition_quantities", "Other Quantity"): "other_amt"
            })
        ampl = amplpy.AMPL()
        ampl.setOption('solver', 'gurobi')
        ampl.eval(_diet_mod)
        _diet_input_pdf.set_ampl_data(dat, ampl, {
            "categories": "CAT",
            "foods": "FOOD"
        })
        ampl.solve()
        self.assertTrue("unbounded" == ampl.getValue("solve_result"))
Exemple #6
0
import amplpy
import pandas as pd
import matplotlib as plt

ampl = amplpy.AMPL(
    amplpy.Environment(r'C:\Users\diego\Documents\Diego_Aldunate\iPre\AMPL'))
ampl.read(
    r'C:\Users\diego\Documents\Diego_Aldunate\iPre\CS_2020_2\Modelo_AMPL\modelo_nl_costo.mod'
)
ampl.readData(
    r'C:\Users\diego\Documents\Diego_Aldunate\iPre\CS_2020_2\Modelo_AMPL\datos_precio_Fijo.dat'
)
ampl.setOption('solver', 'knitro')
#print(ampl.getOption('solver'))

ampl.solve()

fo = ampl.getObjective('FO')
#print(fo)
print("Valor de Funcion Objetivo es:" + str(fo.value()))

produccion = ampl.getVariable('P')  #indice k y t
print(produccion.getValues())

produccion = ampl.var['P'].getValues()
print(produccion)
prod = list(produccion.getColumn('P.val'))
print(prod)

produccion = ampl.var['P'].getValues().toPandas()
produccion.index = pd.MultiIndex.from_tuples(produccion.index)
Exemple #7
0
import amplpy
import pandas as pd
import Modificar_Parametros
import Generar_Dataframe
import Variables
import Graficar

ampl = amplpy.AMPL(amplpy.Environment(r'C:\Program Files\AMPL'))
#ampl = amplpy.AMPL(amplpy.Environment(r'C:\Users\diego\Documents\Diego_Aldunate\iPre\AMPL'))
ampl.read(
    r'C:\Users\diego\Documents\Diego_Aldunate\iPre\CS_2020_2\Modelo_AMPL\modelo_nl_costo.mod'
)
ampl.readData(
    r'C:\Users\diego\Documents\Diego_Aldunate\iPre\CS_2020_2\Modelo_AMPL\datos_precio_Fijo.dat'
)
ampl.setOption('solver', 'knitro')
#print(ampl.getOption('solver'))

#### Definir Parametros ###
hold = ampl.getParameter('hold').getValues().toPandas()
hold_df = Generar_Dataframe.Generar(hold)

alpha = ampl.getParameter('alfa').getValues().toPandas()
alpha_df = Generar_Dataframe.Generar(alpha)

beta = ampl.getParameter('beta').getValues().toPandas()
beta_df = Generar_Dataframe.Generar(beta)

# Iteracion 0#
funcion_objetivo = []
ampl.solve()